СБОРНИК ТРУДОВ

Том V

СУХУМИ — 1961
ниее суточное количество осадков за счет линии отмечается летом (VII—VIII), величина суточных максимумов достигает 226—251 мм.
4. Годовое количество осадков в основном суммируется за счет дождев го умеренной величины (до 30 мм в сутки), что составляет за год 995 мм, при числе дней с осадками 133.
5. Наибольшее количество осадков с величиной до 30 мм в сутки по сезонам зафиксировано зимой — 323 мм, а наименьшее летом — 170 мм.
6. Количество осадков больше 30 мм в сутки выпадает по сезонам года почти равномерно, но минимум приходится на зиму — 123 мм, а максимум весной — 174 мм.
7. Выпадение атмосферных осадков в теплое время года вызывает освещение воздуха и уменьшение в нем запыленности, что способствует увеличению концентрации легких атмосферных ионов.
8. Наблюдающиеся времена дождя летом, вызывают похолодание в приземном слое атмосферы, создают благоприятные условия для терморегуляции, путем сглаживания изменчивости метеоэлементов.

К ВОПРОСУ О ДОЖДЕВЫХ ОСАДКАХ, ФОРМИРУЮЩИХ ЛИНЕВОЙ СТОК, В УСЛОВИЯХ ПОБЕРЕЖЬЯ АБХАЗИИ
(Материалы диссертации на соискание ученой степени кандидата технических наук)

Атмосферные осадки распределяются на земной поверхности весьма неравномерно. Если среднегодовое количество осадков для прибрежной зоны Абхазии по многолетним данным составляет 1300—1400 мм, то для Батуми величина их достигает 2400 мм и более. Известно, что одна часть осадков испаряется, другая просачивается в почву и оставшаяся часть превращается в поверхностный сток.

Обильные осадки с их высокой интенсивностью порождают в городах мощные водные потоки, которые наносят немало вреда городскому хозяйству. Этот сток воды подлежит отведению от благоустроенных территорий городов и курортов. Неправильный учет количества атмосферных осадков при расчетах нередко приводит к ошибке в определении истинной величины ливневого стока, а это, в свою очередь, вызывает ошибочность в расчетах подземных ливневосточных сооружений.

Поэтому одним из основных условий при проектировании ливневосточных сооружений в благоустроенных населенных пунктах, в частности, на курортах, является правильный подход к выбору расчетного количества атмосферных осадков, причиняющих ущерб городскому хозяйству, в виде загрязнения и размыва окружающей среды, затопления подвальных помещений зданий, нарушения нормального движения транспорта и др.

Устранение этих явлений возможно только отводом ливневых вод путем устройства подземных и наземных гидротехнических сооружений.

Для определения пропускной способности этих сооружений и вообще сети ливневой канализации требуется точный подсчет количества вод, попадающих на поверхность водосборного бассейна.

Как известно, не всякий дождь образует поверхностный сток с малых водосборов. Из известных трех типов дождев — облажки, ливневые и моросящие, наиболее существенны, в данном случае, ливневые осадки, которые выпадают в течение короткого периода времени, внезапно и с большой интенсивностью. Размеры ливневого стока определяются состоянием поверхности почвы, с одной стороны, и интенсивностью и продолжительностью осадков, с другой стороны. Интенсивность дождя, зависящая от продолжительности его, для Абхазии колеблется в различных пределах: Гагра — 2,92—1,80 мм/мин., Гудаута — 2,96—1,82 мм/мин., Сухуми — 3,24—1,84 мм/мин., Очамчыре — 2,92—1,80 мм/мин. Средняя величина максимальной интенсивности ливневой части дождя для западной зоны побережья — 2,36 мм/мин., а для восточной её зоны — 2,54 мм/мин.

Эти данные показывают, что прибрежная зона Абхазии по характеру выпадающих осадков является однородной территорией.

10. Труды ин-та курортологии
Представляет интерес установление периодов в году с большим количеством осадков и высокой их интенсивностью. С этой целью были подвергнуты анализу месячные суммы атмосферных осадков по данным метеостанций Абхазии. В результате этого анализа установлены три фазы в годовом ходе изменения осадков, рис. 1.

Рис. 1. Среднемесячное количество осадков в мм по прибрежной зоне Абхазии.

Первая фаза охватывает период с мая по август и характеризуется наименьшими месячными количествами осадков (88—113 мм). Вторая фаза характеризуется относительно высокими показателями осадков (106—135 мм) и охватывает промежуток времени с сентября по декабрь, при этом максимум осадков падает на сентябрь и декабрь. Третья фаза начинается в январе и продолжается до апреля включительно. В этот период наблюдается умеренное количество осадков (106—117 мм).

Исходя из этих данных, наибольшего количества осадков, а отсюда наибольшего поверхностного ливневого стока, следует ожидать во второй фазе, т. е. в сентябре—декабре (не говоря о суточном максимуме атмосферных осадков, наблюдающемся летом — в июле, августе и вследствие этого, вероятностей формирования поверхностного стока). Это положение подтверждается также и рассмотрением данных о количестве дней с осадками. По установленным нами фазам, количество дней с осадками распределяется следующим образом: в первой фазе — 37 дней, во второй — 47 и в третьей — 57.

Тот факт, что во второй фазе имеется место выпадание большого количества осадков, при числе дней с осадками на 10 дней меньше, чем в третьей фазе, указывает на вероятность выпадения во второй фазе атмосферных осадков преимущественно ливневого характера и с большей интенсивностью. Это последнее подтверждается данными о средней продолжительности осадков по отдельным фазам. Так, во второй фазе средняя продолжительность осадков составляет 368 часов, а в третьей — 537 часов.

В этой связи не лишено интереса состояние почвы по отдельным фазам. По данным наблюдений над влажностью почвы установливаем, что первая фаза характеризуется влажностью почвы равной 20—23%, вторая 22—25% и третья 22—26%. На глубине 50 см влажность почвы составляет в первой фазе 26—32%, во второй и третьей 29—32%.

Так как не все дожди могут вызвать мощный поверхностный сток, по данным материалов наблюдений по плювиографу, независимо от количества осадков за сутки, отобраны были такие дожди, которые отличались высокой интенсивностью.

Сами по себе суточные суммы осадков не являются еще показателем порождения мощных водных потоков, так как интенсивность этих осадков невысока и образующийся поверхностный сток характеризуется спокойным его пропусканием.

Группируя дожди по количеству осадков и подсчитывая их повторяемость в течение года, находим:

Таблица 1

<table>
<thead>
<tr>
<th>Группа</th>
<th>Дождь с количеством осадков до 20 мм</th>
<th>Дождь 21—30 мм</th>
<th>Дождь 31—40 мм</th>
<th>Дождь 41—50 мм</th>
<th>Дождь 51—60 мм</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>повторилась 120 раз (84%)</td>
<td>11</td>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>II</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Как видно из приведенных данных и рис. 2, в условиях побережья Абхазии годовое количество осадков слагается в основном из дождей умеренных величин (20—30 мм), лишь изредка случаются осадки, достигающие 30 мм. Годовой сумма осадков невелика, хотя последние для наших целей и являются основными, так как они и вызывают высокий ливневый сток. Согласно приведенным данным, средняя повторяемость осадков, вызывающих высокий ливневый сток составляет 8%.

Рис. 2. Число случаев различной величины дождя за год.

Исходя из этого, исследование подлежат дождям с количеством осадков более 30 мм.

При определении ливневого стока с единицы площади бассейна могут быть два случая: один — когда данные наблюдений по плювиографу отсутствуют и второй — когда эти данные имеются.

В первом случае, когда отсутствуют данные, расчет ливневого стока производится по формуле, предложенной П. Ф. Горбачевым:

\[q = \frac{166 \cdot 7 \cdot a \cdot b^{2} \cdot p^{3} \cdot r}{\rho_{5}} \] (1)

где \(q \) — ливневой сток с единицы площади (га) в д/сек.
в – среднегодовое количество осадков в мм,
а – климатический коэффициент, зависящий от географического положения пункта,
p – период однократного переполнения в годах и
т – продолжительность дождя в минутах.

Для районов Карачаевской (Тахтис, Сочи, Сухума, Батуми) и Абхазии значение а ≈ 0,0866.

Формула П. Ф. Горбанова не может дать хорошего результата, так как в ней фигурирует годовая сумма осадков, что не характеризует линеопасность района и показатель степени γ принят постоянным.

При отсутствии самописцев дождя, ЛНИИКХ также предложил способ расчета значения q, положив в основу формулу q = \frac{A}{B^p} \ldots (2), причем для показателя A в заключительных отчетах принимался 0,75; определение параметра А производится по формуле
A = 200 \cdot Q_\text{изл} \cdot 1 + C \cdot \text{log} P \ldots (3), в которой Q_\text{изл} – интенсивность дожда при продолжительности его 20 мин. Период однократного переполнения P равен 1 году. Значения Q_\text{изл} определяются по карте изолиний или по формуле q = \frac{A \cdot B^p}{1 + C \cdot \text{log} P} \ldots (4), где
Q_\text{изл} = среднегодовой дефицит влажности (на количество осадков), C = \frac{B}{A} \ldots (5), где A и B – линееве параметры, вычисленные ГГИ для европейской и азиатской частей Союза.

Среднее значение коэффициента C для Черноморского побережья Кавказа принимается равным 0,85.

При наличии материалов наблюдений по самописцу дождя ГГИ предложена формула для определения интенсивности дождя:

q = \frac{A_1 + B \cdot \text{log} P}{1 + C \cdot B^p} \ldots (6)

Значения линейных параметров A_1 и B вычислены для каждого пункта и даются в различных курсах гидрологи и гидрологии, а показатель степени q меняется в пределах 0,5–0,8.

Применение приведенных выше формул и значений параметров, в них входящих, для расчета линейного стока в условиях Кавказа показало неопределенность значений параметров. В отдельных случаях расчетный сток превышает фактический. Так, в ЛНИИКХ Q_\text{изл} = 200 \text{л/сек.} \ldots (6) и в других предуменьшены – до 149 \text{л/сек.} \ldots (6).

С целью уточнения расчетных показателей формулы применительно к условиям Черноморского побережья Грузии, где линееве осадки, как отмечалось выше, имеют существенное значение, нами подвергнуты анализу 15-летние данные наблюдений по самописцам дождей.

Расшифровка лент пломбограмм и анализ подвергались дождям с величиной осадков, превышающих 30 мм, с продолжительностью интервала 5, 10, 15, 20, 30 минут, т. е. такие дожди, которые вызывают переполнение ливневых сооружений.

Ввиду того, что значение интенсивности дождей, при одинаковых количествах осадков, для различных пунктов рассматриваемой прибрежной зоны незначительно отличается друг от друга, то значения параметра A и показателя степени p установлены общие для всей прибрежной зоны Абхазии.

Значение стока воды при различной интенсивности ливня (без учета потерь осадков) в табл. 2. В этой же таблице помещены значения стока без учета потерь с площади 1 га.

<table>
<thead>
<tr>
<th>t мин.</th>
<th>1 наиб.</th>
<th>1 нами.</th>
<th>1 средн.</th>
<th>q = 166,7 \text{см}</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3,24</td>
<td>0,60</td>
<td>1,36</td>
<td>260</td>
</tr>
<tr>
<td>10</td>
<td>2,26</td>
<td>0,50</td>
<td>1,26</td>
<td>210</td>
</tr>
<tr>
<td>15</td>
<td>2,11</td>
<td>0,44</td>
<td>1,10</td>
<td>183</td>
</tr>
<tr>
<td>20</td>
<td>2,02</td>
<td>0,40</td>
<td>1,00</td>
<td>167</td>
</tr>
<tr>
<td>30</td>
<td>1,90</td>
<td>0,36</td>
<td>0,87</td>
<td>146</td>
</tr>
</tbody>
</table>

Располагая на поле координат значений q и t, получаем криволинейную зависимость. Приданая аналитическое выражение этой зависимости, получаем следующую формулу для рассматриваемой прибрежной зоны Абхазии: q = \frac{450}{t^0,32}, т. е. A = 450

показатель степени γ = 0,32.

Выводы

1. По характеру режима атмосферных осадков и их распределению в году, прибрежную зону Абхазии можно считать однородной, расчетные ливневые показатели для которой могут быть общими для всей территории.

2. В условиях прибрежной зоны Абхазии дождь с количеством осадков более 30 мм является ливневым, повторяемость которого в году составляет 8%.