ТРУДЫ
СУХУМСКОГО ГОСУДАРСТВЕННОГО
ПЕДАГОГИЧЕСКОГО ИНСТИТУТА
им. А. М. ГОРЬКОГО

X-XI

АФСИНАН АХЬЯНТКАРРАТЭ ШОКУТЫЖЬЫРТА
СУХУМСКОЕ ГОСУДАРСТВЕННОЕ ИЗДАТЕЛЬСТВО
АКУА ЛЕБЯЖО-1958 СУХУМИ
ОПЫТ ФИЗИКО-ГЕОГРАФИЧЕСКОГО РАЙОНИРОВАНИЯ
ЧЕРНОМОРСКОГО ПОБЕРЕЖЬЯ АБХАЗИИ

Определение и границы

За Черноморское побережье Абхазии мы принимаем ее нижнюю зону с "субтропическим климатом", верхняя граница которой поднимается приблизительно до 600 м над уровнем мора, кроме того, здесь проходит в основном граница оприкоренения мезозойских и кайнозойских отложений и верхний предел распространения типичного Колхидского леса. В рельефе он выражен крутым склоном полосы известняковых гор, образующих довольно высокий уступ. Вся полоса побережья Абхазии находится под явным влиянием Черного моря.

Таким образом, побережье Абхазии, принимаемое в указанных границах, простирется от берега Черного моря вглубь страны и, в среднем имеет ширину 10—15 км, представляет хорошо выраженную физико-географическую область Абхазской АССР.

Побережье Абхазии составляет около 3 тыс. кв. км, т. е. 34,5 % всей Абхазской Автономной Советской Социалистической Республики (8664 кв. км).

ОБЩИЕ ОСОБЕННОСТИ ПРИРОДЫ ЧЕРНОМОРСКОГО ПОБЕРЕЖЬЯ АБХАЗИИ ПО ОТДЕЛЬНЫМ КOMPONENTAM И ФАКТОРАМ ЛАНДШАФТА

По общему характеру рельефа Черноморское побережье Абхазии представляет как бы огромную лестницу, широко открытую в сторону Черного моря и окаймленную южными склонами Кавказа (Большого Кавказа).

Для северо-западной части побережья Абхазии весьма характерны резко выраженные в рельефе кулисообразно расположенные боковые хребты и отроги Кавказа.

Этот пояс максимальной ширины достигает в Гагрском районе. Здесь обращает на себя особое внимание Гагрский известняковый массив, который своими веерообразно расходящимися отрогами в районе г. Гагр подходит к самому берегу моря и падает к нему крутыми склонами. Поэтому предгорная холмистая зона и приморская равнина, столь характерные для Южной Абхазии, здесь вовсе отсутствуют.

Западнее сел. Гантиади отроги Гагрского массива несколько

1 На юго-востоке и северо-западе границами Черноморского побережья Абхазии являются рр. Ингури и Псоу, а на юго-западе границей служит берег Черного моря.
оттесняются к северу от морского берега и оставляют место приморской пологой равнине.

Между Старыми и Новыми Гаграми почти к самому берегу моря подходят южные склоны хребта Маммадышка. Он к востоку постепенно отходит от берега моря и уступает место холмисто-предгорной зоне; последняя, в свою очередь, переходит в плоскую Пицундскую низменность.

К юго-востоку от среднего течения р. Бзыби тянется высокий и круто падающий к югу Бзыбский хребет. Он своими южными склонами, переходящими в холмистую зону, образует северную возвышенную полосу исследуемой территории в Гудаутском районе. Южнее в сторону моря протягивается довольно широкая Дурипшко-Лыхинская аккумулятивно-эрозионная равнина.

Особое место занимает отделенная эрозионной долиной от южных склонов Бзыбского хребта конгломератовая Мюссерская возвышенность (305 м), протягивающаяся вдоль морского берега между рек Аквара и Минията (Черная).

В районе Нового Афона прибрежная равнина опять сходит на нет, и Псырхинский известняковый хребет выплутную подходит к морю. К западу он погружен под уровень Черного моря, а на восток, продолжаясь в виде хребта Ашамты, переходит в характерный для Сухумского района комплекс хорошо выраженных в рельефе низких антиклинальных известняковых складчатых хребтов (Бырчха, Ахбюк, Абачагдар, Герзельский).

На восток от р. Кодори складчатая горная зона (Кодорский хребет) постепенно все более отходит от берега моря. Поэтому южнее от него максимальное развитие получает сильно расчлененный пояс холмистого предгорья.

Между холмистым предгорьем и морским берегом протягивается плоская приморская низменность. Последняя в Северо-Западной Абхазии представлена лишь отдельными узкими (3—5 км) фрагментами (Леселидзе, Пицунда, Бомбори, Гумиста), тогда как здесь она тянется на всем протяжении берега, имея в начале от 5 до 10, а к югу от р. Галиазга 15—20 км ширины. Между реками Кодори и Галиазга она известна под названием Адзюбинской (что по-абхазски означает «междуречье»), а южнее р. Галиазги—Самурзаканской низменности. Обе они входят в состав Колхидской низменности и представляют ее северную часть.

Черноморское побережье Абхазии расположено на стыке двух различных тектонических структур (складчатой системы Кавказа и так называемой Грузинской глубы) и характеризуется довольно сложным геологическим строением как по литологическому составу горных пород, так и по возрасту их.

В исследуемой территории замечается общее полосчатое расположение структурных и морфологических единиц, причем породы самого древнего возраста (известняки палеогена) слагают более высокую периферическую полосу с резко расчлененными рельефом. Третичные свиты со своими сравнительно рыхлыми породами (конгломерат, глины, песок, реже известняк) в целом соответствуют холмисто-предгорной зоне, а четвертичные отложения (галечник, глина, ил, песок) слагают самую низкую гипсометрическую ступень побережья.
На этом субстрате в результате воздействий эндогенных и экзогенных сил на протяжении геологического прошлого и в основном с неогенового периода выработались современные формы рельефа. Главенствующую роль принадлежит эндогенным силам и особенно вертикальным движениям. Крупные формы рельефа созданы в основном в результате действия эндогенных (эпейрогенез) сил, разнообразные мелкие формы — экзогенными силами. Эти два фактора находятся здесь в тесном взаимодействии. Усиление или ослабление экзогенных процессов связано с вертикальными движениями. При воздымании побережья в неогене и антропогене (что происходило не раз) экзогенные процессы стремились более активно срезать рельеф, но этому мешало все еще продолжающееся сводовое поднятие Кавказа. Каждое воздымание нарушало выработанный до того профиль равновесия, и, таким образом, возбуждала экзогенные силы, заставляя их начинать свою работу «с начала». Чередование таких поднятий с периодами покоя создавало типично выраженный террасовый ландшафт Черноморского побережья Абхазии.

Денудационные процессы в холмисто-предгорной зоне характеризуются довольно высокими показателями и поньше, что само по себе указывает на современные колебательные движения значительной амплитуды. Интенсивность этого процесса усиливается большим количеством осадков, выпадающих в виде частых и продолжительных ливней, при высокой среднегодовой температуре. В результате — топографическая поверхность предгорной зоны находится ниже геологической, а в рельефе преобладают волнистые гряды, расчлененные довольно глубокими ущельями на ряд отдельных массивов.

Приморские террасы Абхазии характеризуются довольно деформированными поверхностями. Это указывает на то, что здесь проходили неравномерные движения на общем фоне сводового поднятия Кавказа.

Определенная роль принадлежит и литологии местности. Так, среднегорная (переходная) зона исследуемой территории сложена меловыми и третичными известняками. Складчатая структура здесь сказывается в широтном простирании зоны, а карстовый рельеф (слабое поверхностное расчленение, редкое развитие поверхностной гидросети, глубокие и каньонобразные ущелья, многочисленные пещеры и др.) обусловлен литологическими особенностями. В предгорно-холмистой зоне хребты и холмы совпадают или с антиклинальными складками (Сатанджо, Бырда, Ахбиок, Псырдха и др.) или же с выходами сравнительно прочных пород (Мюссерская возвышенност, Сухумская прибрежная конгломератовая гряда и др.), имеющих резкие формы рельефа. Пониженные же пространства, приуроченные, главным образом, к синклинальным депрессиям (Ингурская, Цхирская, Цебельда-Шромская и др.), выполнены глинами и характеризуются мягким рельефом.

Черноморское побережье Абхазии по своим почвенно-климатическим условиям имеет важное сельскохозяйственное значение (хотя препятствует широкому применению механизации) и является наиболее культурно освоенным; поднимающиеся же над ним высокие и скалистые известняковые хребты, напротив, образуют
гораздо более "дикий" ландшафт с густыми лесами и редким населением.

На основе собранного нами материала и ряда схем геоморфологического расчленения Кавказа, Грузии и Абхазии (15, 24, 25, 26 и др.) на Черноморском побережье Абхазии можно выделить следующие геоморфологические зоны:

1. Прибрежная песчано-галечниковая зона (валы и пляжи, с эфемерными и миниатюрными террасами), расположенная от уровня моря до 4–5 м.

2. Низменная заболоченная зона с погребенными террасами, сложенная глинами. От 0–1 до 40 м.

3. Возвышенно-равнинная зона с низкими (молодыми) террасами, сложенная глинами и четвертичными конгломератами. От 40 до 100 м.

4. Зона древних четвертичных приподнятых террас, сложенная глинами и конгломератами. От 100 до 200 м.

5. Зона собственного предгорья (неогеновых террас), сложенная конгломератами и третичными известняками. От 200 до 500 м.

6. Зона среднегорно-карстового ландшафта, сложенная главным образом меловыми известняками. От 500 м и выше.

Для первых двух зон характерен тип рельефа преобладающей аккумуляции (со слабым поверхностным расчленением), для последующих двух (3–4) — аккумулятивно-эрозионный, а для последних (5–6 зоны) — тип рельефа преобладающей эрозии (эрозионно-тектонический).

Черноморское побережье Абхазии лежит (42°30’—43°30’ с. ш.) за пределами субтропической зоны и к последней можно отнести только на генетическом основании (чередованием тропического и умеренного климатических режимов в течение года). Поэтому черты природного ландшафта не являются здесь типичными субтропическими. Это в первую очередь хорошо видно из анализа современного растительного и почвенного покровов побережья Абхазии.

Основу растительного покрова побережья Абхазии составляют широколиственные листопадные деревья колхидского типа (ольха, граб, дуб, благородный капи, бук). Характерное же для лесов субтропических областей земного шара обилье вечнозеленных растений, лиан и эпифитов на Черноморском побережье Абхазии выражено слабо, это в первую очередь объясняется теми относительно суровыми климатическими условиями, в которых развивался (и развивается) растительный покров побережья Абхазии с плиоценового периода до наших дней.

Вечнозеленые древесные на побережье Абхазии вовсе отсутствуют среди деревьев 1-ой величины. Среди деревьев 2-ой и 3-ей величины имеется лишь несколько вечнозеленых: самшит (Ficus colchica), остролист (Plex aquifolium), земляничник (Arbutus

2 В связи с тем, что геоморфологические структурные элементы, рельефобразующие породы и прочие факторы морфогенеза имеют на исследуемой территории широтное пространение (с юга на север), геоморфологические зоны имеют широтное распространение по вертикали в виде быстро сменяющих друг друга ступеней.
andrachne), лавр (Laurus nobilis)\(^3\). Наконец, небольшое число видов вечноzelеных имеется среди кустарников (лавровишни и розодендрон понтский) и лиан (павой, понтская иглица и плющ Hedera canariensis, H. colchica). В субтропических же районах Средиземноморья и Восточного Китая вечнозеленые растения имеют большое разнообразие и распространение и образуют нижнюю, почти чистую, «вечнозеленную» зону.

Кроме того, многие вечнозеленые растения Абхазии биологически перестроились и приспособились к умеренным климатическим условиям, в связи с чем распространены они от уровня моря и до верхней границы леса. Так, самшит поднимается на высоту 1200—1300 м над уровнем моря и свободно выдерживает понижение температуры ниже нуля на 15—18\(^\circ\), а островист (Ilex colchica) и лавровишня поднимается даже до 2000 м над уровнем моря. Также очень высоко поднимается вечнозеленая лиана (Hedera canariensis). Поэтому перечисленные растения никак нельзя относить к современным условиям к субтропическим видам.

Наличие этих элементов вечнозеленой растительности во флоре Абхазии указывает на то, что в прошлые геологические периоды климат Абхазии вообще, и ее побережья в частности, должен был быть более теплым, более близким по температурным условиям к Средиземноморскому и Восточно-Китайскому, чем в настоящее время. Характерная в настоящее время для Абхазии мезофильная листопадная растительность должна была тогда располагаться в более верхних поясах гор, а нижняя полоса лесного пояса тогда должна была быть занята группировками вечноzelеной растительности, как это имеется в типичных субтропических районах.

В современный период климатические условия Абхазии, столь сильно ухудшившиеся в плейстоцене, стали более мягкими и влажными. На эту мысль наряду с палеогеографической интерпретацией постгляциала побережья Абхазии наталкивает и то, что современные климатические условия побережья Абхазии дают возможность для разведения некоторых субтропических растений (пищевых и технических), хотя с обязательным применением известного комплекса агротехнических мероприятий.

Но этот процесс в природном растительном покрове не выражен, значит перелом в климатах побережья в сторону значительной субтропичности еще не наступил. Поэтому на Черноморском побережье Абхазии мы не имеем субтропического климата в настоящем смысле слова.

Климат Черноморского побережья Абхазии мы можем отнести к субтропическому только условно. Это по двум соображениям: на генетическом основании и по возможностям разведения некоторых субтропических культур, ибо природный растительный покров и конкретные особенности климата не дают права отнести его к типично субтропическому. То же самое говорит и анализ почвенного покрова побережья Абхазии.

Современные условия Черноморского побережья Абхазии,

\(^3\) По техническим причинам латинские названия даются лишь в самых необходимых случаях (прим. ред.)
из-за сравнительно холодного климата и сильно расчлененного рельефа, не благоприятствуют «красноземному» типу почвообразования. Основным процессом почвообразования здесь является хотя «субтропический», но подзолистый. В результате на побережье Абхазии распространены главным образом подзолистые почвы и их разности. В типично субтропических же районах преобладают красноземы — результат «красноземного» типа почвообразования. Правда, на Черноморском побережье Абхазии имеются отдельные пятна красноземов, но они являются результатом не современных климатических условий, а прошлых геологических времен, когда климат здесь был более жарким и влажным, а рельеф менее расчлененным.

Но Черноморское побережье Абхазии в случаях мягкой зимы имеет черты субтропического климата.

Так, среднегодовая температура в умеренной зоне на всем побережье (до 600 м над уровнем моря) составляет +13,6° и при наличии термических сезонов приводит к двум вегетационным периодам. В теплую половину года (21—23°) здесь культивируются растения, требовательные к теплу, а в холодную (+2°—7°) — размещаются умеренных широт (в это время субтропические многолетники находятся в состоянии ростового покоя). Количество холодных дней, когда среднесуточная температура оказывается ниже 0°, в прибрежной зоне не превышает в среднем 5 дней за зиму, однако безморозный период продолжается не больше 290—316 дней. Количество дней с температурой выше +5° достигает 351, а количество дней с эффективной температурой (выше 10°) — 250. Число часов солнечного сияния составляет за год (Сухуми) 2238, т. е. около 50% от возможного.

Все это вместе взятое, а также благоприятный баланс влаги (среднегодовой 5,4, за самый сухой месяц 1,4) создает условия для сравнительно нормального произрастания до 500—600 м над уровнем моря некоторых субтропических растений. Поэтому и говорят, что Черноморское побережье Абхазии имеет субтропический климат.

Все это результат того, что Черноморское побережье Абхазии перегрето на 3° по годовой средней по отношению солнечного климата и на 3—5° по отношению соответствующих широт. Это равносилино тому, как если бы Черноморское побережье Абхазии мы передвинули в направлении к экватору на 300—450 км.

Наличие такой сравнительно высокой для этой широты (и до значительной высоты) температуры является следствием характера подстилающей поверхности, радиационного баланса и общей циркуляции атмосферы при ведущей роли первого.

Как видно, защищает Черноморское побережье Абхазии от вторжения холодных воздушных масс непосредственно с севера, затрудняет перенос теплых (тropических) воздушных масс на

--

4 В умеренной прибрежной полосе составляет +14,4°.
5 В том числе за лето 812 часов или же 61% от возможного.
север и обеспечивает, таким образом, более высокие температуры для него. Кроме того, Кавказони обусловливает возникновение барьерных (орографических) осадков, обострение циклонической деятельности и длительное стационарирование циклонических систем.

Приморское положение исследуемой территории, получающей зимой тепло от нагретых в течении теплого сезона морских водных масс (море теплее побережья осенью на 2,8°, зимой на 3,6°) также благоприятствует созданию более высоких температур зимнего сезона. Но не было бы Кавказони, положительное влияние общей циркуляции атмосферы и Черного моря было бы исключено за счет усиления континентального влияния и природа Абхазии была бы совершенно иной.

В. В. Докучаев (1898) отмечал, что если бы на месте Кавказа была равнина, то она представляла бы собой степную или полупустынную территорию, подобно территориум, окружающим Кавказ. Эти слова великого ученого с полным основанием могут быть приложены и к Черноморскому побережью Абхазии.

Народная Республика Болгария лежит на тех же широтах, что и Абхазия, и на берегу того же Черного моря, но там мало чувствуется положительное влияние как Черного моря, так и общей циркуляции атмосферы. На территории Болгарии среднегодовая температура ниже на 3—5°, а атмосферные осадки выпадают в два раза меньше в среднем за год, чем на Черноморском побережье Абхазии.

Это результат того, что конфигурация подстилающей поверхности для обеих стран диаметрально противоположна; Болгария лежит на западном, а Абхазия на восточном берегу Черного моря.

Как известно, в этой полосе преобладает перенос западных воздушных масс. Они сперва проходят территорию Болгарии, а потом вступают в пределы Черного моря, обогащаются здесь до полнительной влагой и конденсируют их на южных склонах Кавказони. Не было бы Кавказони, эти воздушные массы, не оставив здесь заметного количества осадков, свободно могли продвинуться дальше на восток.

Возьмем другой пример. Город Новороссийск лежит на восточном берегу Черного моря и притом лишь на 1°25' севернее от Гагры, но отличается от последнего значительной континентальностью климата. Там средняя температура января ниже на 4,5° (температура во время борьи падает даже до —15—20°), а атмосферные осадки выпадают почти в 2 раза меньше. Дело в том, что г. Новороссийск плохо закрыт от холодных вхождений зимой и отрицательного влияния степей летом, а влияние Черного моря при отсутствии высокого барьера затушевывается.

Таким образом, в формировании климата Черноморского побережья Абхазии главную роль играет Кавказони, конечно на фоне общей циркуляции атмосферы. Что касается Черного моря, то оно играет второстепенную роль: создает местные центры ат-

6 Противоположная картина была бы в том случае, если бы на этих широтах преобладал перенос восточных течений и на побережье Болгарии был бы протянут высокий хребет.
мосферного давления, обогащает воздушные массы дополнительной влагой, смешивает суровость проходящих холодных масс и в комплексе с Кавказиони дает черты морского климата своим восточным прибрежным районам.

Итак, климат субтропического характера на Черноморском побережье Абхазии создается главным образом максимальной степенью закрытости от холодных вхождений, т. е. орографическим, барьерным, армрестом фактором, а не по общему закону широтной зональности.

При наличии мягкой зимы, типичной по средним температурам для субтропического климата, Черноморское побережье Абхазии подвержено зимой иногда внезапным походлениям, небольшим морозам и снегопадам. Это бывает обусловлено исключительно циркуляционными факторами.

Воздействие азиатского антициклона на погодные условия в Абхазии меняется при изменении его положения и мощности (интенсивности). В таких случаях роль Кавказиони (как об этом говорилось выше) исключительно велика, так как он препятствует перемещению холодных масс непосредственно на юг. Но последнее при соответствующих синоптических условиях огивают Кавказиони с северо-запада и по высокому Черноморскому побережью Кавказа вторгаются в Абхазию. От внезапного снижения температуры цитрусовые и другие субтропические культуры получают серьезные повреждения.

Абсолютные минимумы за много лет наблюдений для некоторых характерных пунктов таковы: Гагры — 11°, Гудауты — 14°, Нового Афона — 10°, Сухуми и Гульрипши — 11°, Очамчиры — 14° и Гали — 15,4°.

Все это, а также отсутствие субтропической природной растительности (и почвенного покрова) нам не дает права причислять климат Черноморского побережья Абхазии к категориям чисто (типично) субтропических, как это делают многие исследователи Кавказа. Правда, здесь имеются некоторые черты субтропического климата (как это указывалось выше), но сравнивать его с субтропическими районами Средиземноморья, Восточного Китая, южной части островов Хонсю, Кюсю и др., как это делают некоторые авторы, не представляется возможным. Во-первых, в перечисленных районах замечается более высокая зимняя температура, стимулирующая развитие вечнозеленой растительности, во-вторых, там, со значительным большим эффектом выращиваются субтропические культуры и притом без особой агротехники.

Выпадение атмосферных осадков на Черноморском побережье Абхазии происходит достаточно обильно7 во все месяцы года, большей частью, однако, с определенно выраженным максимумом осенью и зимой (53%, общеоблагових), обусловленных обострением фронтов и задержкой циклонов. Весна и лето в связи со стационаризацией субтропического антициклона бывают обычно более сухими и ясными, особенно лето. Летом нередко бывают даже небольшие засухи. Это обусловливается не только летним

7 В среднем за год выпадает 1430 мм.
минимумом осадков (23%), но и усиленным притоком лучистой энергии и характером выпадения осадков.

Летом радиационный баланс доходит до 51 б кал/см² и вызывает усиленное испарение. В связи с этим коэффициент увлажнения с 2,6 (январь) падает до 0,80 (август). Засухливость усугубляется еще и тем, что большая часть летних осадков выпадает в виде кратковременных ливней, которые не успевают в достаточной мере увлажнить почву (особенно в холмистой зоне).

Все это происходит в период интенсивной вегетации и вредно отражается на некоторых субтропических культурах, особенно на чайном кусте. От засухи получают серьезные повреждения также местные виды кукурузы.

В связи с тем, что радиационный баланс и зимой является положительным (18 б кал/см²), несмотря на обильные осадки, устойчивый снежный покров не образуется, что весьма радиальным образом влияет на холодные воздушные массы и быстро трансформирует их.

Подытоживая все сказанное, мы можем Черноморское побережье Абхазии отнести к климату субтропического типа условно. По температурным показателям он уступает и Средиземноморью, и Восточному Китаю, и другим типичным субтропическим районам и занимает промежуточное положение между типично субтропическим и умеренным климатом. Что касается увлажнения, то по этому показателю он превосходит Средиземноморье, но уступает Восточному Китаю, располагающимся таким образом между ними. Это ясно видно и из природного растительного покрова этих районов; Средиземноморье характеризуется жестколистыми вечнозелеными и мелколистными с опадающей листвой кустарниками. Восточный Китай — влажными субтропическими лесами, а Черноморское побережье Абхазии — лесной мезофильной растительностью с элементами средиземноморской флоры.

Несмотря на все это, климат Черноморского побережья Абхазии, как и всей Западной Грузии, резко выделяется из климатов Советского Союза своей «субтропичностью» и высокой биологической и хозяйственной продуктивностью.

Огромна роль климата в едином ландшафтном комплексе Черноморского побережья Абхазии. Довольно высокая влажность и сравнительно высокие температуры способствуют образованию в естественных условиях большой биологической массы, особенно растительной.

В связи со сравнительно теплым и влажным климатом, весьма характерным для побережья Абхазии, является непрерывность выветривания и почвообразования во всех сезонах года, приводящие к выносу из корней выветривания огромных количеств оснований, кремнезема и других соединений. Вследствие чего почвы бедны здесь многими элементами пищи растений и требуют внешнего удобрения. Высокие зимние температуры и обильные атмосферные осадки способствуют в известняковой зоне интенсивному развитию карстовых процессов не только в теплое время года, но и зимой.

Обильные атмосферные осадки обусловливают исключительную густоту гидросети. Кроме того положительный температурный

669
режим во многом определяет их физическое состояние. Огромна роль климата в моделировке рельефа.

Поэтому климат по праву является здесь основным ландшафтобразующим фактором. Он всем компонентам: растительности, почвам, гидросети, животному миру, рельефу (только в меньшей степени), а также и хозяйственной деятельности человека — дает свой тон.

Помер удовлетворения от моря и подъема местности соответственно меняются климатические условия, однако, благодаря влажному и равному климату, целеустремленного «субтропического» климата в известной степени сохраняется на всю полосу исследуемой территории.

На Черноморском побережье Абхазии можно выделить три микроклиматических зоны:

1. Узкая прибрежная зона Северо-Западной Абхазии, с умеренно-теплым морским типом климата (среднегодовая амплитуда 17—18°, общегодовое количество осадков 1400 мм), осенне-зимним максимумом осадков (54,5% общегодовых), с теплой зимой (январь +5—7°), с высокой среднегодовой температурой (+14 +15°), максимальным количеством часов солнечного сияния (2200—2300) и сумм эффективных температур (4606), хорошим развитием феново-бризовой циркуляции.

2. Холмистая предгорная зона Абхазии, с умеренно-теплым морским типом климата (среднегодовая амплитуда температуры 18°), обильными осадками во все сезоны года (общегодовые 1463 мм, лето —24°, осень —25,5°, зима —25,5°, весна —25°), более прохладным летом (август 22,6°), сравнительно теплой зимой (самого холодного месяца +1—4°), развитием горно-долинных ветров.

3. Низменная зона Южной Абхазии, с умеренно-теплым полуморским (среднегодовая амплитуда температуры 18—19°) типом климата (общегодовое количество осадков 1442 мм), более морозоопасными свойствами рельефа (абсолютные минимумы до —14—15°), слабым развитием бризовой циркуляции.

На современной гидрографической сети побережья Абхазии резкий отпечаток оставляет орография и литология местности. Кроме того существует тесная связь между гидрологическими свойствами побережья, с одной стороны, и климатом и растительным покровом, — с другой. Немалое влияние оказывает на гидрографию побережья человек со своим хозяйственным творчеством (каналы, искусственные озера, водохранилища и др. гидroteхнические сооружения).

Речная сеть Черноморского побережья Абхазии определяется Кавказией. Такое положение, а также близость моря на юго-западе, обусловливает эрозионную и аккумулятивную деятельность рек как раз в этом направлении. Горный характер местности и близость базиса эрозии при обильных атмосферных осадках создает большую густоту коротких рек.

По гидрографической схеме Т. Кикладшвили (43), реки Черноморского побережья Абхазии принадлежат подрайону транзит-
ных частей больших рек и рек, берущих начало в карстовой зоне Кавказского патомографического района Черноморского бассейна.

Кроме того, ярко выраженным компонентом природы низменной зоны Южной Абхазии являются мелкие, но многочисленные реки, берущие начало в холмистой зоне и в заболоченной низменности.

Большинство транзитных рек в верховьях носит горный характер и протекает в узких долинах; в низовьях они имеют более спокойное течение, но несмотря на это препятствуют образованию льда даже при достаточно низких иногда для этого температурах. Они питаются весенними снегами и льдами и характеризуются весенне-летним половодьем, которое комбинируется с паводочным режимом. Для рек же низменной зоны, основным источником питания которых являются атмосферные осадки преимущественно в жидком виде и грунтовые воды, характерен паводочный режим почти в течение всего года, с осенне-зимним максимумом. Они в суровые зимы подвергаются ледоставу в своих нижних частях.

Своеобразными гидрологическими особенностями характеризуется зона среднегорно-карстового ландшафта. Несмотря на наличие большого количества атмосферных осадков (свыше 1400 мм), в связи с карстом, поверхностная гидросеть развита здесь сравнительно слабо, значительно отличаясь по густоте речной сети от соседних зон. Речные долины в известняковой зоне образуют глубокие, узкие с отвесными склонами ущелья, нередко напоминяя каньоны. Часто долина без заметного перерыва переходит в сухую долину, представляющую каменистое русло (долина р.р. Маниквары, Маджарки и др.). Местами у подножия известняковых хребтов выходят обильные источники и целые подземные реки (Репроа, Мчишта, Речхи и др.).

Реки Абхазии в силу их горного характера не имеют транспортного значения, на некоторых реках производится лишь силав леса. Зато очень большое значение имеют реки Абхазии как источники гидроэнергии. Энергетическая мощность главных рек Абхазии составляет 2 млн. 700 тыс. квт (71). Таким образом, на 1 км² территории Абхазии приходится 316 квт водной энергии, т. е. в 35 раз больше, чем в среднем по Союзу. По этому показателю Абхазия занимает первое место не только в Закавказье, но и по всему Советскому Союзу. В дореволюционное время эта гидроэнергия оставалась почти нетронутой. Только с приходом Советской власти, с ее плановым социалистическим строительством, стало возможным использовать запасы «белого угля» Абхазских рек, как важнейшие энергетические ресурсы республики. Если до революции в Абхазии было всего 4 маленьких гидроэлектростанции (принадлежавшие частным лицам) с общей мощностью 900 квт, то в настоящее время уже работает ряд государственных, районных и множество межколхозных гидроэлектростанций с общей мощностью более 30 тыс. квт.

На Черноморском побережье Абхазии имеются две основные группы озер: одна в Южной Абхазии (Бебесырские), а другая в Северо-Западной Абхазии (Пицундские). Все они расположены в низменной полосе и по своему генезису принадлежат частью к
реликтовым, частью к гидрогенным \(^8\). На побережье имеются также антропогенные (Ново-Афонские) и лагунные (в устьях рр. Кодор, Цхуроцинскали, Амариа, Гагида и др.) озера. Последние перекрыты от моря песчаными валами или косами. Размеры прибрежных озер незначительны. Они поэтому имеют лишь местное значение (для птицеводства, рыбоводства и водного спорта). На озере Большой Бебесур установлен памятник ценному пушному зверьку нутрии, завезенному из Южной Америки.

Для всех озер Черноморского побережья Абхазии характерными являются малые глубины, гомотермия во все сезоны года, неустойчивый химический режим, довольно большая мощность донных наносов, темно-коричневый цвет воды, существование вокруг них заболевенных пространств и др.

* * *

Интенсивные тектонические движения прошлых геологических периодов (особенно третичного и начала четвертичного) благоприятствовали интенсивному размыву коры выветривания и возникновению холмистого рельефа. Таким образом, геоморфологические условия прошлого не благоприятствовали формированию и сохранению мощных элювиев; эрозия опережала рост элювия (т. е. механический снос преобладал над химической денудацией), поэтому, несмотря на жаркий и влажный климат, красноземы здесь не получили широкого развития в отличие от Адларского побережья Черного моря. Образованию их не благоприятствуют и современные условия из-за холодного климата и расчлененного рельефа.

Образование и развитие почв в настоящее время складывается при взаимодействии сравнительно теплоего и влажного климата, довольно густой растительности и мощной эрозии и денудации на общем фоне разнообразного литологического состава страны по вертикали. Наиболее характерной для исследуемой территории является непрерывность выветривания и почвообразования, обусловленные положительной температурой и большим количеством осадков во всех сезонах года.

Низменная зона (где ясно выражено болотообразование, с одной стороны, и подзолообразование, с другой) представлена различными болотными и заболоченными почвами, среди которых большое распространение имеют торфяно-болотные, плавато-болотные и подзолисто-глеевые почвы. Для холмисто-предгорной зоны характерны подзолистые, желтые и красноцветные почвы в комплексе с буроземными почвами, а также пергейно-карбонатные почвы и их разности \(^9\). На высоте 400—500 м заметно ослабевает выражение теплого климата и характерные для

\(^8\) Средняя часть побережья Абхазии, полностью дренируемая речной сетью, совершенно лишена озер.

\(^9\) Перегнойно-карбонатные почвы преобладают выше, в горно-лесной зоне, в области развития известнякового рельефа, но заходят отдельными массивами и в область предгорий, а местами (Гагра, Новый Афон) вместе с известняковыми хребтами подходят к самому берегу моря.
него почвообразовательные процессы. Доминирующее положение получает тут относительно более холодный, умеренный климат. В связи с этим подзолистые и жилые почвы смешиваются горно-лесными почвами, буроватыми и перегнойно-карбонатными почвами.

Почвенно-климатические условия Черноморского побережья Абхазии позволяют выращивать самые разнообразные культуры. На небольшой территории побережья Абхазии произрастает 125 разных видов сельскохозяйственных культур, нужных народному хозяйству. Но эту цифру можно с уверенностью увеличить, осваивая 15—20 тыс. га прекрасных земель, ныне поросших кустарником.

Богатство и разнообразие флоры и растительности побережья Абхазии (посчитано 1160 видов, т. е. 58% всего количества видов Абхазской флоры) обусловливаются сравнительно теплым и влажным климатом, а также разнообразными почвами и сложной и длительной историей развития его растительного покрова.

Рассмотрение биологической эволюции растительного покрова побережья Абхазии на общем фоне палеогеографической ситуации с миоценового периода дает возможность сделать следующие выводы.

1. Палеогеографическая картина распределения моря и суши в плиоцене и антропогене, сравнительно малая мощность четвертичного оледенения (700—800 м депрессия снеговой линии), вестима благоприятные орографические и, наконец, микроклиматические условия говорят о том, что прибрежная полоса Северной Абхазии имела все необходимые условия для сохранения представителей третичной (реликтовой) флоры.

2. А что такая флора здесь действительно произрастала непрерывно с верхнего плиоцена видно из анализа ископаемых флор: Сухумского (49), Кодорского (50), Дуабского (51), Яштукского (55), Кобулетского (29), а также из анализа и сравнения современной флоры с перечисленными выше ископаемыми флорами.

Эти факты говорят о том, что Черноморское побережье Абхазии явились одним из главных убежищ для третичной флоры Кавказа и что отсюда после плейстоцена должно было произойти постепенное расселение представителей реликтовой флоры на обсаждающихся от дна моря местах Колхидской низменности.

На Черноморском побережье Абхазии основным фактором развития той или иной растительной формации являются орографические и, в частности, склона11, и соответствующая им степень влажности и освещения. Конечно, определенное значение имеют также почвенные условия.

Так, в окрестностях Пицунды, на низменности, сложенной аллювиальными наносами р. Бзыбя с большим содержанием карбонатных пород, комплекс ольховых лесов, столь характерный

10 На фоне влажного климата даже незначительные гипсометрические перепады вызывают разные растительные группировки.

11 Вместе с экспозицией склона соответственно меняются условия влажности и освещения, определяющие в свою очередь и структуру почвы и, в конечном итоге, характер растительности.
для низменной зоны Абхазии, усложняется развитием на более сухих местах зарослей грабинника и самшита. В дубовых лесах на известняковых почвах развивается второй ярус из грабинника, которого не бывает на некарбонатных почвах.

Но всюду на побережье Абхазии на карбонатных и некарбонатных почвах склонов южной экспозиции и грэбни возвышенностей, как это подчеркивает В. П. Малеев (59), заняты лесом из Quercus iberica в его различных типах. На затененных и более влажных склонах, а также на пониженнях рельефа, опять-таки независимо от почвы, развиваются леса с преобладанием бука, тоже в разных вариантах и типах.

Промежуточное положение имеет растительность глубоких ущельй, в которых экологические условия (освещение, влажность, почва, температура) быстро изменяются на небольшом пространстве соответственно сильному (резкому) изменению рельефа. Поэтому в этих местах имеются представители обеих главных экспозиций, а также и более высоких полос лесного пояса, т. е. смешанные леса.

Кроме того, в Абхазии замечается различие в растительности и в горизонтальном направлении, обусловленное орографией и литологией местности, а также взаимным влиянием соседних флористических округов12. В связи с этим Абхазия, выделенная А. А. Гросскейном и Д. Н. Соспиковым как особый округ Колхидской флористической провинции, далеко не однородна на всем своем протяжении с северо-запада на юго-восток и тянется к соседним районам.

Заметная роль принадлежит человеку (вырубка леса, занос экзотов и др.), деятельность которого является давними фактором в комплексе природных условий побережья Абхазии. Влияние этого фактора весьма усилилось после установления Советской власти в Абхазии, в связи с решением задач развития сельского и курортного хозяйства.

В связи с этим на Черноморском побережье Абхазии в настоящее время мы имеем группу естественных типов растительности, возникших без вмешательства человека, и группу искусственно созданных растительных типов, возникших вследствие хозяйственной деятельности человека.

Из первых групп, в соответствии с экологическими условиями произрастания, можно выделить следующие растительные формации (комплексы):

1. Псаммофильная растительность приморской полосы средиземноморского типа, развитая на песках, приморских обрывах и склонах.

2. Водно-болотная растительность, развитая в заднях пониженнях (от 1 до 20—25 м над уровнем моря).

3. Сильно увлажненные леса приподнятой окраины приморской низменности (от 20—25 до 50 м над уровнем моря).

4. Типичный колхидский лес с вечнозеленым подлеском и кустарниками с опадающей листвой (от 50 до 600 м над уровнем моря).

12 Это различие второстепенное, верх берет все-таки высотная зональность.
Леса Черноморского побережья Абхазии издавна славятся своими ценными лесными породами, которых насчитывается около 25. Замечательным в этом отношении является самшит, каштан, бук, дуб и др. В лесах побережья имеются и другие ценные породы, в особенности много здесь дубильных растений (лавровишина, жонийский рододендрон, все виды дуба, граб, ольха и др.). Довольно богато также побережье Абхазии кормовыми растениями (около 40 видов), на базе которых здесь издавна (с неолита) было развито животноводство. В лесах побережья в большом количестве отмечены дикорастущие и одичавшие плодовоягодные растения (груши, яблони, алыча, гранат, греческий орех, виноградная лоза, хурма, желковица и др.). Большое применение получили декоративные растения местной флоры (самшит, платан и др.) и растения, обладающие лечебными свойствами. Из последних здесь насчитывается около 90 видов.

Разнообразные леса, наряду с благоприятными климатическими условиями, и обилие в лесах зверей уже издавна способствовали здесь жизни человека. Они являлись ареной деятельности Homo Sapiens с эпохи нижнего палеолита.

На побережье Абхазии в целом известно около 40 равномерно разбросанных палеолитических стоянок, значительное количество которых принадлежит древнему каменному веку. Особенно следует отметить в этом отношении Яптухскую стоянку нижнего палеолита, датируемую около 400—500 тыс. лет до н. э. 13

Начиная с этого периода, мы имеем неоспоримые доказательства о непрерывном существовании человека на Черноморском побережье Абхазии. До неолитической эпохи аборигены занимались только собирательством, широко используя дикорастущие плодовые; к периоду неолита общество переходит к оседлой жизни (рыболовство, животноводство); а к периоду энеолита — к земледелию (лен, просо, пшеница, овес). С VI—V вв. до н. э. на побережье Абхазии появляются греческие колонии, беспощадно эксплуатировавшие этот богатый край.

Все эти процессы не могли не вызывать истребления лесов вообще и ценных пород в частности.

Большие изменения в картину естественного растительного покрова, несомненно, внесла и интродукция иноземных растений. Активная интродукционная работа на побережье Абхазии начинается около 150 лет тому назад, т. е. после присоединения Абхазии к России. Уже к концу 1955 года здесь насчитывалось около 800 видов экзотов деревьев и кустарников.

Из экзотов, имеющих в Абхазии большое хозяйственное, декоративное (и вообще лесоводственное), а также ландшафтное значение, следует отметить: во-первых, хвойные: дуглассы, кедры (2 вида), приморскую сосну, пинию, треххвояные сосны (более 4 видов), секвойю, болотный кипарис, криптомерию, калифорнийский речной кедр, кипарисы (более 3 видов), а во-вторых, лиственные: бамбуки (около 30 видов), греческий орех (3 вида), дуб Quercus ilex, Q. suber (и др.), тюльпанное дерево, магнолию,

13 Она является самой древней по Сочу после Сатанцдарской стоянки в Армянской ССР.
настоящий и ложный камфорный лавр, ликвидамбур, мелия, масляное дерево, лаковое дерево, восковое дерево, конфетное дерево, эвкалипт (около 40 видов), акацию (около 100 видов) и др.

Кроме перечисленного, на Черноморском побережье Абхазии произрастают и имеют большое декоративное значение около 20 видов пальм. Из них наиболее морозостойкость отличаются: пальма дикообразная, слоновая пальма, китайская веерная пальма, средиземноморская веерная пальма и др.

Кроме интродукционной работы на изменение картине естественной растительности побережья Абхазии сильно повлияло широкое развитие сельского хозяйства, а также строительство населенных пунктов, дорог и другие мероприятия.

В 1956 г. на Черноморском побережье Абхазии многолетние культуры и пашни в колхозах и совхозах занимали около 70 тыс. га, площадь госземфonda, бывшая под сельским хозяйством — около 50 тыс. га, присадебные участки — около 20 тыс. га, города, парки, пути сообщения, мелиоративные каналы, водохранилища и др. — около 10 тыс. га, т. е. всего 150 тыс. га. Таким образом, культурная площадь Черноморского побережья Абхазии составляет 50% его территории.

Остальная площадь побережья Абхазии занята естественными лесными участками, рассеянными по всему побережью в виде островных, иногда довольно значительных массивов. Некоторая часть их оберегается государством и имеет противозагрязнное, климатически-курортное или научное значение.

Сюда же входят водные бассейны, болота и голье пятна.

* * *

Черноморское побережье Абхазии, как и вся Абхазия в целом, бедно высшими формами животного мира и в частности млекопитающими как по видовому составу (25 видов), так и в количественном отношении. То же самое следует сказать и о рыбах пресных вод Абхазии (36 видов). Является ли эта бедность результатом экологических условий в прошлом или следствием каких-то отрицательных современных условий, остается пока еще неизвестным. Но последнее предположение нам кажется более вероятным и приемлемым, так как имеются многочисленные археологические и письменные материалы, указывающие на качественное и количественное богатство фауны побережья Абхазии в прошлом.

Как мы видели выше, человек со своей хозяйственной деятельностью значительно переделал растительный покров побережья Абхазии, в связи с чем последний потерял свой первобытный характер. Это не могло произойти без оттеснения и прямого уничтожения большого количества животных. В конечном итоге многие редкая и виды животных приспособились к другим станциям обитания, а некоторые вовсе вымерли.

Наличие в Абхазии климатических и растительных высотных зон, а также хозяйственная деятельность человека в значительной
степени влияет на видовой и особенно на количественный состав обитающих здесь животных. В связи с этим здесь намечаются три основные стации: морская (песчано-галечная), озерно-болотная и лесная. Наряду с этими имеются немало видов, встречающихся во всех зонах — от приморской до лесной. Но такое положение в значительной мере нарушается прогрессирующей хозяйственной деятельностью человека.

Таким образом, несмотря на общую цельность, почти все элементы и факторы ландшафта Черноморского побережья Абхазии в отдельных его частях заметно различны. Вместе с этим закономерное сочетание этих элементов на одном и том же месте исследуемой территории создает определенную природную зону или подзону, к выделению и характеристике которых и переходим.
ЛАНДШАФТЫ ПОБЕРЕЖЬЯ АБХАЗИИ

ПРИНЦИПЫ ФИЗИКО-ГЕОГРАФИЧЕСКОГО (ЛАНДШАФТНОГО) РАЙОНИРОВАНИЯ

Физико-географическое (ландшафтное) районирование должно служить установлению тех естественных, объективно существующих территориальных единиц ландшафтной оболочки, которые сформировались в процессе ее исторического развития. Она должна преследовать как научно-теоретические, так и широкие практические цели. Ландшафтное районирование должно дать представление о местных особенностях природной среды. Это тем более необходимо, что последние решения партии и правительства о дальнейшем развитии сельского хозяйства обязывают строго учитывать местные различия природных условий, так как это является обязательным моментом правильного планирования различных отраслей народного хозяйства, особенно сельского.

Изучение большинства схем физико-географического (ландшафтного) районирования Кавказа, Грузии и Абхазии показало, что единого принципа районирования до сих пор нет.

Так, Б. Ф. Добрынин (26, 27, 41) в основу своих схем положил провинциально-генетический принцип. А. Е. Фединой (97) физико-географическое районирование Кавказа выполнено на основе зонально-провинциально-генетического принципа. Также поступает и Т. А. Сихарулидзе при физико-географическом районировании Абхазии (91).

«Районирование сложная проблема, потому что сложна сама природа» (В. Б. Соцава, 92, стр. 472). На разных территориях, особенно в горных районах, приходится сталкиваться с ландшафтами различной сложности и строения, в связи с чем многие выделенные здесь комплексы могут иметь узко местное, локальное значение.

Опыт показывает, что Кавказ представляет собой как раз один из наиболее сложных комплексов физико-географических областей. Отсюда и сложность его районирования.

Методы районирования у разных авторов также различны. Это происходит от того, что при неназубежном во всех случаях принципе физико-географического (ландшафтного) районирования его методы могут меняться в зависимости от величины, сложности и изученности территории, а также и от задачи и масштаба работы.

Совершенно откровенен и прав Ф. Н. Мильков, когда говорит, что «на практике все физико-географы прибегают к принципу ведущего фактора, так как при районировании они хотя и учитывают весь комплекс факторов, но всегда обращают в первую очередь внимание на те компоненты, которые являются определяющими для данной таксономической единицы» (92, стр. 479).

В развитии и смене высотных ландшафтных зон, безусловно, существенную роль играет рельеф. Однако и в высотной зональности, как совершенно справедливо подчеркивает Б. Ф. Добрынин (28), превалирующим фактором, подобно тому как и на равнинах, оказывается климат,— резкое изменение климата с высотой вызывает смену почвенного и растительного покрова, животного мира, а также отражается на рельефе и гидрологии зоны.

В дифференциации ландшафтов горных стран, безусловно, главную роль играет рельеф. Орографические рубежи во многих случаях являются здесь и естественными границами между ландшафтными районами и областями. Они, как барьеры, влияют на распределение воздушных течений и атмосферных осадков, они только одним своим физическим присутствием и развитием вызывают высотную климатическую зональность и вместе со всем этим определяют значительные ландшафтные различия.

Но внутри же ландшафта чрезвычайно важным ландшафтобразующим фактором является климат. Это очень ярко видно из анализа природы Черноморского побережья Абхазии. Здесь климат оставляет свой весьма глубокий отпечаток на всех природных компонентах, обусловливает колхидский тип растительности, влияние влажного и теплого климата сильно сказывается на почвообразовании (болотообразование и подзолистый тип почвообразования), поэтому основные типы почв являются здесь климатогенными, создает густую гидросеть и водно-эрозионные формы рельефа.

Влияние рельефа на остальные элементы ландшафта весьма огромное, но это влияние косвенное и происходит через климат.

Но климат Черноморского побережья Абхазии в свою очередь является произведным, главным образом, от рельефа, от подстилающей поверхности14.

Таким образом, два главных фактора — климат и рельеф — являются основными, более всего определяющими характер ландшафта Черноморского побережья Абхазии. Рельеф, главным образом, дифференцирует ландшафты, а климат является здесь ведущим фактором внутри ландшафта.

Согласно «ведущему фактору» и составлены почти все физико-географические (ландшафтные) схемы Кавказа, Грузии и Абхазии. Б. Ф. Добрынин обращал большое внимание на сочетание нескольких ведущих факторов, а именно рельефа и климата.

Физико-географическое районирование Кавказа А. Е. Федина проведено (97) на основе анализа взаимодействия всех

14 Исходя из этих соображений, «субтропический» ландшафт Черноморского побережья Абхазии мы можем считать орографически обусловленным, барьерным и т. о. автономным.
компонентов комплекса. Но и здесь главный упор делается на рельеф.

До сегодняшнего дня нет и общей, и общепринятой системы таксономических единиц. Это положение усугубляется тем, что по сложности, величине и степени известности отдельные районы Советского Союза весьма разнообразны.

Если заниматься районированием всей территории СССР в целом, то тогда основными таксономическими единицами могут быть — географическая страна и зона. Если брать, например, только русскую равнину, то здесь основными таксономическими единицами, как полагает Ф. Н. Мильков, должны быть зона и провинция (69). А если изучать более ограниченную территорию (например, Абхазию), то основной таксономической единицей, видимо, придется брать географический ландшафт и т. д.

По мнению большинства ландшафтоведов (С. В. Калесник, Н. А. Солницев, А. Г. Исаченко, В. Б. Сочава и др.), основной географической единицей районирования является именно ландшафт, только у разных авторов он носит различные названия: «ландшафтный район» (Н. А. Гвозденский, Ф. Н. Мильков), «природный территориальный комплекс» (Лидов и Солницев), «тип местности» (Ф. Н. Мильков), «вид местности» (А. Я. Степанов) и др.

Как известно, большой спор вызывает установление как нижних, так и высших таксономических единиц, особенно первых.

Для Кавказа Б. Ф. Добрининым принята (27) следующая таксономическая система: страна — область (группа) — зона (район); А. Е. Фединой (97): страна — провинция — область — район. Н. А. Гвозденский для Большого Кавказа выделяет лишь районы (15).

Для Грузинской ССР Б. Ф. Добринин и соавторы (41) выделяют: область, подобласть (зона), район (подзона), Т. А. Си- харулидзе в Абхазии выделяет только зоны. Также поступает и К. В. Кавришвили при характеристике Гагрского района (40). Н. И. Матурали (65) в окрестностях Сухуми выделяет зоны и подзоны (иногда полосы).

Обзор этих схем показывает, что природные территориальные комплексы во многих случаях выделены несколько субъективно, в связи с чем они в таксономическом отношении трудно сравнимы. Во-вторых, в существующих схемах физико-географического районирования Кавказа, Грузии и Абхазии совершенно отсутствуют низкие таксономические ступени, представляющие закономерный ряд территориальных единиц и имеющие несомненный практический интерес.

Следует констатировать, что низкими таксономическими единицами (ниже ландшафтной подзоны), насколько нам известно, на Кавказе никто не занимался, а «фация» и «урочище» у нас по сей день не находят гражданского права. Поэтому следовало бы установить синонимы «фации» и «урочища» на Кавказе в соответствии с местными этнографическими терминами.

Для Черноморского побережья Абхазии нами принята следующая система таксономических единиц: зона — подзона. Мы вы-
деляют ландшафты, принимая в зависимости за главные таксономические единицы и подчиняя их зоне или подзоне, хотя выделение «морфологических» составных частей ландшафта представляется совершенно возможным, но пока затруднительным в связи с неразработкой низших таксономических единиц для физико-географической детерминированности Кавказа.

Наш зоны и подзоны представляют собой генетически единые территории, отличающиеся общими путями исторического развития, а также характеризующиеся общими ландшафтными спектрами. То, что у нас принято за «ландшафт», есть «комплекс уроцищ», по А. Г. Исаченко (36), а то, что нами названо «зоной», у А. Е. Федюнин (97) и Н. А. Гозденко (15) обозначено «районом».

Между ландшафтами, выделенными нами, существуют косвенные генетические различия. Это, в первую очередь, различный возраст, различная степень «субтропичности» климата, своеобразие растительного и почвенного покрова, а также большая или меньшая сохранность «первичного ландшафта». В каждом из них наблюдается свое сочетание и свой повторяемость типологических единиц.

Установленные нами ландшафты, в связи с появлением в северо-западной половине побережь Абхазии азональных единиц, разорваны на отдельные части, хотя обладают общностью характера и относительным генетическим единством. Отдельные разрозненные участки ландшафта нами названы «районами».

В каждом районе одного и того же ландшафта наблюдается та повторяемость типологических единиц, которая характерна в целом для данного ландшафта, хотя иногда проявляется и своеобразные оригинальные черты.

На основе принятых нами теоретических положений и главнейших выводов, полученных при изучении отдельных элементов и факторов (рельеф, климат, растительность и др.) природы побережья Абхазии, на его территории нами выделены 3 зоны, 3 подзоны и 12 районов (см. схему).

1. Зона приморской низменности.

а. Подзона берегового ландшафта, сложенная песчано-галечными наносами, повышенная в виде дюн, с растительными типами среднего и малодостаточного увлажнения.

15 Несмотря на это Черноморское побережье Абхазии в целом имеет хорошо выраженную ландшафтную целостность благодаря влажному и ровному климату и типичным колхидаев лесам. Кроме того, Черноморское побережье Абхазии в связи с благоприятными почвенно-климатическими условиями (незамерзанием рельеф, преобразующий широкой механизации) поддерживает прогрессирующей хозяйственной деятельности человека и имеет поэтому более или менее однообразный «субтропический-континентальный» вид.

16 Постепенная и закономерная смена отделных элементов природы побережья Абхазии с юга (с берега Черного моря, с низменности) на север (в горы - в глубь страны) обусловила и смену ландшафтов в этом направлении, приобретая характер высотной зональности.
6. Подзона озерно-болотного ландшафта, сложенная глинями, с избыточным почвенно-грунтовым увлажнением, с различными болотными и заболоченными почвами, с типично водной и водно-болотной растительностью.

1. Кодорско-Гагидский район
2. Лепкопский район
3. Пшундиский район

В. Подзона повышенной равнины, более или менее дренированная, сложенная глинами и четвертичными конгломератами с аллювиальными и подзолистыми почвами, с типами сильно увлажненных лесных растительных комплексов, максимально подверженная воздействию человека.

4. Южно-Абхазский район
5. Дурипсийский район
6. Леселидзевский район

II. Зона холмисто-предгорного ландшафта, сложенная конгломератами и третичными известняками, с сильно расчлененным рельефом, наличием жителепных, красноцветных и перегнойно-карбонатных почв, с типичными мезофильно-третичными лесами пойменного типа и значительной площадью культурной растительности.

7. Южно-Абхазский предгорный район
8. Сухумский предгорный район
9. Гудаутский предгорный район
10. Гантиадский предгорный район

III. Зона среднегорно-карстового ландшафта, сложенная меловыми известняками, со слабо выраженной гидрографической (поверхностной) сетью, с горно-лесными почвами, с господством буковых лесов.

Зона среднегорно-карстового ландшафта для исследуемой территории является пограничной зоной, но в двух местах (Новый Афон, Гагра) она, как бы прорезая вышеперечисленные зоны, подходит к берегу Черного моря и этим самым нарушает общий характер зональности ландшафтов побережья Абхазии. В связи с этим нами здесь выделены два азональных района:

11. Ново-Афонский район
12. Гагрский район

Данная схема не может претендовать на полное и детальное районирование природных комплексов побережья Абхазии, так как в ней не нашли отражения «морфологические» составные части ландшафта (уровни и фации), представляющие закономерный ряд территориальных единиц, хотя в тексте данной работы можно ясно заметить их существование на Черноморском побережье Абхазии.

Ниже мы приводим краткую характеристику выделенных зон, подзон и районов с указанием наиболее присущих им особенностей.
ФИЗИКО-ГЕОГРАФИЧЕСКАЯ ХАРАКТЕРИСТИКА ВЫДЕЛЕННЫХ ТЕРРИТОРИАЛЬНЫХ ЕДИНИЦ

I. Зона приморской низменности.

Зона приморской низменности соответствует Абхазской части «подобласти (зоне) Камынцкой низменности», по Б. Ф. Добрынику (41), и западной части «приморского района провинции — области Камынцы», по А. Е. Фединой (97). Здесь мы, учитывая происхождение и историю развития территории, с одной стороны, и чередование (смену) элементов рельефа (геоморфологию), микроклимата (водного режима) и растительных комплексов, с другой, — выделили три продольные высотные ландшафтные подзоны: а) подзона берегового ландшафта, б) подзона озерно-болотного ландшафта и в) подзона повышенной равнинности.

а. Подзола берегового ландшафта.

Почти вся прибрежная полоса Абхазии хорошо ограничена от моря идущими параллельно ему песчаными береговыми валами. Мы здесь имеем не типично развитый дюнный ландшафт, а ряд (цепь) песчаных бугров, изредка достигающих 4—5 м. По сходству образования их можно было бы назвать дюновидными валами.

Невыработанность и нетипичность дюнского ландшафта вызвана здесь дефицитом алювиального материала для потока береговых наносов, способствующих усилению морской абразии. Местами удается видеть только один вал, но от устья р. Гагази и до р. Гагиды хорошо выражены два вала, из которых второй (внутренний) весьма мощный (иногда до 400 м ширины) и в значительной мере охвачен процессом почвообразования.

Прилегающие к валам в некоторых местах (Леселидзе, Илори и др.) более или менее выровненные буристие пески, несомненно, в прежние времена составляли с ними одно целое, но постепенно пришли в спокойное состояние в связи с отделением от моря, неполнением достаточного нового песчаного пополнения и зарастанием.

Участки поверхности между валами, а также и за вторым валом в большинстве случаев представлены хорошо выраженным параллельными им мезопочвами.

Места прорыва береговых валов почти всегда закупорены морской галькой, намываемой в периоды штормов, и очень часто, в особенностя в засушливо время года, устья маленьких рек оказываются совершенно слепыми, и вода из рек поступает в море, лишь фильтруясь через толщину галечника и песка.

Полоса песчано-гравелитовых наносов, слагаемая из алювиальных речных наносов, переработанных морем, в геологическом отношении является самой молодой частью Черноморского побережья Абхазии и образована в течение исторического периода.

Песчано-галечниковая полоса либо непосредственно и постепенно переходит в прибрежную равнину, либо прерывается над ее невысоким уступом поднимается береговая терраса. Такой характер носит она на всем протяжении Южной Абхазии. К северу же от Сухуми береговой ландшафт разнообразится время от
времени близко подступающими к морю холмами и хребтами, склоны которых иногда обрываются к морю, оставляя лишь узкую песчаную или галечниковую полосу прибоя. Только между устьями рр. Аапста и Мишты, а затем от сел. Ганиади и до р. Посу опять появляются береговые песчаные вали со свойственным им ландшафтным комплексом.

Подобная геоморфологическая закономерность сложения территории, ее геологическая молодость, низкие отметки высот над уровнем моря, в связи со сравнительно теплым климатом явились основой причиной развития здесь песчаных и неразвитых почв и характерных для них псаммофильных растительных формаций и своеобразной фауны.

Растительность морского берега самая молодая. Она берет свое начало после образования дюн и прочих песчаных накоплений.

Существенные черты растительности береговой полосы более или менее однородны на всем протяжении Абхазии. Она образована различными псаммофитами, мало нарушающими общим мертвецко-серый колорит песков берегоового вала (Euphorbia paralias, E. peplus, Silene euxina, Anthemis euxina, Calystegia soldanella, Eryngium maritimum, Glauclum flavum, Pancratium maritimum и др.).

В ширмовой зоны пляжа и приморского берегового вала растительность совершенно не развивается на всем протяжении приморской полосы. Внутренняя же зона вала в большинстве случаев представлена своеобразными фитосомами полупустынного типа с участием типичных литоральных псаммофитов, образующих либо смещенные группировки, либо почти чистые.

Песок в этой стадии закрепления берегоового вала рыхлый, почти совершенно лишеплен мелкозем, без следов почвообразовательного процесса.

Огромная роль принадлежит человеку, как давшему ему активному фактору всего приморского ландшафта. В связи с этим во многих местах (особенно около населенных пунктов) не сохранились ни характерные берегоые формы рельефа, ни естественные растительные формации. Там они заменены антропогенным видами ландшафта.

Безусловно, в прежнее время значительная часть песчаной приморской полосы была занята приморскими смещениями лесами, в настоящее время почти совершенно уничтоженными. Частично сохранились лишь сильно поврежденные участки кустарниковой растительности.

Среди них следует отметить заросли барбариса, держки-дёре- ва, анатолийской ежевики, бирючины, иглицы понтской, боярышника, лавра благородного, самшита и др. Эти кустарники не образуют сплошного насаждения, а разбросаны среди обнаженных песков или сильно выбитной скотов травянистой растительности.

Постоянные нарушения (рубка, выпас скота и др.) не дают
возможности развиваться этим лесам, и в большинстве случаев мы их встречаем на тех участках побережья, где влияние человека сказалось наименее сильно (Гагида — Гудава, Кодори — Цукургили, Гантади — Лесилидзе и др.).

В связи с особенно физическими условиями (сухость грунта и интенсивная инсоляция) прибрежная песчаная полоса Абхазии является местом произрастания средиземноморских растений.

Здесь, по Н. М. Альбову (1896), между Пицундой и Гудаутой, на приморских утесах встречается средиземноморское зонтичное (Crithmum maritimum). Между Пицундой и Гаграми сплошной стеной растет гигантский тростник (Arguido donax) под Сухуми — Imperata cylindrica. По всему побережью, на ровном песке, вдоль самой линии прибоя пышно растет одно из красивейших средиземноморских растений — приморская лилия (Lilium euclidium). Всюду также распространены следующие средиземноморские виды: Tribulus terrestris, Euphorbia paralis, Euphorbus bodius около Гудауты Medicago marina, Polygonum maritimum и др.

Весьма замечательным участком берегового ландшафта побережья Абхазии является Пицундская сосная роща.

Расположена она на Пицундском мысе, к югу от устья р. Бзыби, и, следуя узкой полосой на протяжении 7 км по очертанию берега, имеет подковообразную форму с обращенной в сторону моря выпуклостью. Ширина рощи различна: она является максимальной (около 1 км) за малым по оси мыса, а в обе стороны до конца рощи, постепенно убывая, сходит на нет. Со стороны моря роща ограничена линией пляжа, а со стороны суши линией заднего понижения и занимает в целом около 200 га площади.

В имеющейся литературе неоднократно подчеркивается средиземноморский характер растительности Пицундской рощи и вообще морского берега Северо-Западной Абхазии. Основание такому возвращению было положено еще Н. М. Альбовым в конце прошлого века. Более подробное описание рощи дано А. Л. Ростовцевым (81), В. П. Малеевым (57) и А. А. Колаковским (48) в последующее время.

Занятая рощей часть мыса состоит из наносов р. Бзыби и берегового потока. Внизу на глубине 6 м — крупная галька, выше — мелкий галечник и, наконец, в верхнем слое — мелкий морской песок. В глубине рощи, в связи с понижением местности, слой песка становится тоньше, местами — тонкий слой перегни и густой покров из хвои, местами развит мховой покров. Песчаная почва в ближайшей к морю полосе рощи на поверхности является совершенно сухой.

Такой характер почво-грузunta, в связи с высокой температурой (летом 22,5°, зимой 4—5°, годовая 14,5°), большим количеством ясных дней (более 60%), постоянным движением воздуха (создаваемым бризами, горно-долинными ветрами и фейями) поддерживает испаряемость на высоком уровне и вызывает интенсивное испарение, вызывающее интенсивное испарение, вызывающе...
Анализ до Мюссеры (южнее Пицунды), но растет лишь отдельными экземплярами, ни где не образуя скоплений.

Отдельные деревья пихтовой сосны достигают 200-летнего возраста и 50 м высоты. В роще бросается в глаза преобладание средиземноморских (по Мапееву, «восточносредиземноморских, малоазиатских») форм растений. Они особенно обильно встречаются в прибрежной и средних зонах, где они составляют главный элемент растительности, придающий роще своеобразно средиземноморский характер. Среди них следует отметить: Arbutus andraeanae, Pancratium maritimum, Cistus tauricus, Imperata cylindrica, Vitex agnus castus и др.

Последний является представителем крымско-новороссийского элемента, число видов которого все больше и больше возрастает по мере движения к северу. Так, к известняковым склонам Северо-Западной Абхазии приурочена группа травянистых мхов-лещин, и небольших кустарников типа фригана: Seseli rupestris, Satureja hortensis, Rubia cordata и др.

Кроме перечисленных средиземноморских растений, подлесок Пицундской рощи состоит в первую очередь, из колючей колюшной иглицы, растущей местами сплошным ковром и мешающей свободному движению по роще. Отдельными группами разбросаны сумах. На берегу моря растет замечательная приморская лилия, имеющая заросли облепихи, барбариса и держки-дерева. На открытом приморских песках, кроме Imperata cylindrica, встречается песчаная осока и молочай.

Здесь растет значительное количество грабинника Carpinus orientalis, который в южной части рощи образует сплошные заросли. В северной же части рощи, параллельно сосновым насаждениям, тянется самшитовый лесок с примесью грабинника.

По Н. М. Альбову, ассоциация грабинника вторичного происхождения, развившаяся в результате уничтожения лесов. В связи с этим Б. П. Малеев впервые высказывает мысль о смене сосны грабинником (57), образующим по периферии сосновой рощи хорошо выраженную зону.

Вначале Б. П. Малеев (1925) смену сосны грабинником объяснял большой приспособленностью последнего к местным условиям существования, впоследствии (1927) основную причину этого он видел в пожарах и других искусственных факторах, способствующих более интенсивному надвиганию на рощу грабинника.

Интересную попытку проверки этих соображений сделал недавно А. А. Калаковский (48).

Он установил, что «процесс смены сосны грабинником на Пицунде... выражен рельефно и слагается из нескольких стадий» и «что эта смена вполне закономерна, сложившаяся довольно давно и идущая беспрерывно с момента формирования самого мыса» (48, стр. 284, 289).

Но значит ли это, что Пицундская сосовая роща вымирает? Нет, так как деятельность моря подготовляет все новые и новые песчано-галечниковые субстраты и возобновление сосны происходит достаточно успешно. И, несмотря на то, что со стороны суши
грабинник наступает на сосновую рощу, процесс почвообразова-
ния на песчаных массивах под пологом сосны обнаруживает медлительный характер и не идет быстрее, чем образование новых субстратов, заселяемых сосной по периферии рощи. Иначе за столь длительный период существования сосновая роща уже давно исчезла бы с лица земли. В пользу этого говорит и приуровоченное к берегу расположение самой рощи, преимущественно на молодых субстрадатах, еще не охваченных почвообразовательным процессом. Здесь мы наблюдаем как бы "перепольование" сосны на новые субстраты, что и обеспечило ее сохранность до сегодняшнего дня (48).

Однако, современное развитие берегов Абхазии (дефицит аллювиального материала) все больше замедляет образование новых песчано-галечниковых наносов, усиливают морскую абразию и ставят под серьезную угрозу судьбу весьма уникальной сосной рощи. Оно может ускорить процесс смены сосны грабинником. Характерным примером в данном случае служит участок самшитово-грабиникового леса на северной окраине рощи, подходящей вплотную к абразионному берегу моря. Здесь наблюдается не только прирост береговой полосы, а наоборот, ее сокращение, в связи с активной морской абразией.

Пицундская сосновая роща объявлена заповедником, но дело с охраной рощи, как памятника природы, имеющего высокую научную ценность, обстоит весьма плохо. Роща не огорожена, все еще не изжиты факты отрицательного искусственного воздействия (выпас скота, постоянное хождение и езда через рощу).

Хотя в данное время и нет большой опасности быстрой гибели сосной рощи в результате смены ее грабинником, но в целях замедления этого процесса и сохранения рощи в границах, близких к современным, необходимо вмешательство человека.

А. А. Колаковский рекомендует (48) разбивку территории заповедника на две части: опытно-исследовательскую, оставляемую в неповрежденном виде, и направленно-восстановительную, в которой следует применять ряд мероприятий по улучшению возобновления сосны во всех стадиях смены, а также производить лесопосадки сосны на местах вырубаемого грабиникового леса, на полянах и т. п.

Пицундская сосновая роща интересна и своим животным миром. По Е. С. Миляновскому (70), в роще из млекопитающих встречаются: шакалы, зайцы, сони-полчики, лесные мыши, землеройки, ежи, кроты и летучие мыши. Из рептилий попадаются живородящая и зеленая ящерицы. Среди заселений иглицы и между кустарниками можно заметить желтогузку и веретенницу, встречаются ужи, медянки и оливковый полоз. В зарослях грабинника еще обитает редкая теперь сухопутная черепаха. Из земноводных найдены острощапная лигушка и квакша. Почти повсеместно на открытых местах трава усыпана огромным количеством мелких улиток, пустьх раковин которых в массе весятся на леске. Из птиц в роще встречаются серые вороны, синицы, горихвостки, над морем летают чайки и буревестники, а иногда на берегу сидят огромные орланы — белохвосты, прилетающие сюда для ловли рыбы. Иногда сюда попадают индийские грифы.
В значительном количестве встречаются насекомые (саранчевые, бабочки, жуки), среди них несколько видов жуков-короедов.

6. Подзона озерно-болотного ландшафта

В связи с условиями микрорельефа в понижениях, лежащих вдоль берегового вала в сторону суши, имея весьма неправильную форму, а иногда (в местах близкого подхода гор к берегу моря) прерываясь вовсе (в средней части Абхазии), тянется комплекс озерно-болотного ландшафта.

Сложена эта подзона глинями и образована в четвертичное время деятельностью рек, покрывавших в течение тысячелетий своими наносами прилегающие к предгорьям более мелководные участки моря.

Подзона (недавно освободившаяся, таким образом, от вод Черного моря) имеет довольно густую, но молодую речную сеть. Юная стадия развития гидросети отражается и в обилии озер и болот.

Влияние рельефа на характер гидросети оказывается весьма существенно. Незначительная абсолютная высота местности обусловливает слабое падение не только местных рек, но и транзитных. Многие реки (Анария, Джокоба, Гагия и др.) в некоторых местах даже застаиваются, а в зоне борьбы с морем, как бы пытаясьсими наносами запрудить устья рек, развиваются лагуны. Поэтому реки этой подзоны (за исключением транзитных), а также озера (в том числе и лагуны), в зависимости от суровости или мягкости зимы, подвергаются ледоставу, чего не наблюдается в других зонах и подзонах побережья Абхазии.

Особенности климатических условий, а именно: большое количество атмосферных осадков (почти полностью в жидком виде) и положительная температура во все месяцы года создают паводочный режим почти в течение всего года. Большая роль в питании рек и озер, бассейны которых расположены в пределах данной подзоны, принадлежит также грунтовым водам.

Грунтовые воды в циркулярной приподнятой части подзоны расположены на глубине до 4-5 м от поверхности. В заболевенной же части уровень их колеблется в пределах от 1 м глубины до поверхности, что и вызывает постоянную или временную водную поверхность.

В связи с этим молодые отложения не затронуты еще процессами аллювиации и почвы отличаются довольно высокой степенью оглеения, а также тяжелым механическим составом, обусловливающим неблагоприятные водо-воздушные свойства их.

В относительно повышенной же части болотный тип почвообразования уступает место подзолистому типу, в связи с чем там распространены переходные типы подзолисто-глеевых почв.

В наиболее пониженной части, вследствие постоянного увлажнения почв-грунтов, сильно развиты процессы торфообразования. Но процесс этот замедляется вследствие содержания в иле рек значительного количества ивести, способствующей разложению растительных остатков. Неблагоприятными условиями для торфообразования является также наличие современной сравнительно высокой температуры воздуха.

Избыточное почвенно-грунтовое увлажнение, постоянная или
временная водная поверхность затрудняет бризовую циркуляцию воздуха, а плоский рельеф способствует застанию холодного воздуха. Поэтому подзона озерно-болотного ландшафта считается более критической (морозоопасной) полосой для субтропических культур. Она вообще мало освоена под хозяйство.

Основные массивы озерно-болотного ландшафта сконцентрированы в Южной Абхазии. Здесь встречаются озера, отчленяющиеся рукава рек, всевозможные затоны и заболевленные пространства, которые можно было бы считать уроочищами данного ландшафта.

Кроме того, значительный массив озерно-болотного ландшафта приурочен к системе озер Пицундского мыса. Он имелся также по берегам медленно текущих рек, преимущественно в их устьевых частях (ледяные, адвективские и др.).

Общий характер растительности и флористический состав озерно-болотного ландшафта Абхазии остается примерно одинаковым. В качестве характерных его черт А. А. Колаковский отмечает (47):

1. Значительное разнообразие фитогеоиндекса водной и болотной растительности, составляющих хорошо выраженный ряд.
2. Собственно болотная растительность низменности относится к группам травяных и лесных низовых болот грунтового питания.
3. Весь флористический комплекс водно-болотной растительности богат и представлен 197 видами, из которых только ноэ му свойственны 103 вида, или 52%, что, несомненно, представляет весьма значительную величину флористической оригинальности.
4. Основное флористическое ядро водно-болотной растительности отличается резкой экологической локализацией, почему мы и имеем очень низкие показатели флористической общности с другими фитогеоиндексами Абхазии. Так, для ольховых лесов этот показатель не превышает 19%, для остальных 5,9%, причем число фитогеоиндексов, с которыми проявляется эта флористическая общность, крайне ограничено.
5. Для флористического спектра основного флористического ядра водно-болотной растительности характерно преобладание бореального элемента (51%) при полном отсутствии кавказского и тундрово-лугового. Довольно высока роль адвентивно-космополитного элемента (17,8%).

Как видно из общего характера водно-болотной растительности Абхазии (47,56) и Южной Колхиды (29,98), они значительно отличаются друг от друга, несмотря на то, что в геоморфологическом отношении объединены рядом общих черт.

Наиболее резким отличием в данном случае является отсутствие в Абхазии сфагновых торфяных болот, хотя единичные находки сфагнумов и имеют место. Совершенно отсутствуют болотные фитогеоиндексы, образованные молиней, рутхоспорой, пушистоплодной осокой.

Такое же различие, хотя и в меньшей степени, находим и в между ними степенями, наряду с общими чертами, наблюдаются и между водно-болотными массивами Южной и Северной Абхазии. Так, например, вид Hibiscus ponticus, свойственный болотам Южной Абхазии, север-
не т. Очамчири не встречается. Кроме того, на болотах Южной Абхазии значительную роль в процессах зарастания играют осоки, главным образом Carex nutiformis, C. vesicaria, C. riparia и др. Обнаруженный здесь фитоценоз с камышом также является весьма характерным моментом, отличающим эти болота от болот Северо-Западной Абхазии. Но, в свою очередь, в прибрежной зоне Северной Абхазии (особенно в районе с. Анишцала) встречается ряд видов, отсутствующих в Южной Абхазии. К ним относятся Cenica villosa, Utricularia vulgaris и др.

В связи с этими особенностями, а также оторванностью друг от друга, в этой подзоне выделено три района: Кодорско-Гагидский район, Лечкопский район и Пицундский район. (см. схему физико-географического районирования).

1. Кодорско-Гагидский район охватывает территорию от р. Кодори до р. Ингури и от приморско-песчаной полосы до цюссе Сухуми — Зугдиди. Тянется этот район узкой полосой (от 3—4 до 8—10 км шириной) и делятся на две, заметно отличающиеся по физико-географическому характеру, ступени.

Верхняя ступень возвышается на 20—50 м над уровнем моря и является приподнятой, более дренируемой озерной данной части. В связи с этим здесь значительных болотных образований не имеется и болотные почвы занимают меньшую площадь. Здесь преобладают почвы переходного типа от болотных к подзолистым (аллювиальные заболоченные, подзолисто-глеевые, дерново-глеевые), развившиеся на современных аллювиальных отложениях. Растительный покров здесь также отличается богатством видов и значительной густотой и питностью.

Нижняя ступень (от 1 до 20—25 м над уровнем моря) в противоположность верхней является подзоной аккумуляции водных масс и распространения заболевоченности. Благодаря часто повторяющимся разливам рек вся территория нижней ступени оказывается разделенной на междуречные сечки, замкнутые между возвышенными над ними речными и морскими береговыми валами. Мы здесь имеем два типа болот. Одни из них образовались при отступании берега моря, вследствие зарастания озеровидных остатков последнего. Другой тип болот образуется в результате застоя воды в низинах.

Образование болот первого типа происходит с момента перекрытия песчаной косой Колхидского залива, а второй с близкого современной эпохи.

Основной причиной развития болот второго типа является целый комплекс факторов, которые можно разбить на две группы.

I.

I. Естественные факторы:

1. Современные отрицательные тектонические движения;
2. Обильные атмосферные осадки;
3. Слабый наклон местности;
4. Наличие песчаных валов вдоль морского берега, затрудняющих сток поверхностных вод к морю;
5. Слабая проницаемость грунта;
6. Паводки, во время которых речные воды, вышедшие из своих руслей, обратно не возвращаются, вследствие наличия песчано-галечных валов вдоль рек;
7. Густота растительного покрова (на низменности);
8. Подпор грунтовых вод более тяжелыми морскими соленными водами.

II. Искусственные факторы:
1. Нерациональная расчистка растительного покрова в верховьях рек, а в царское время хищническая эксплуатация лесов;
2. Постройка дамб вдоль русел, без соответствующего знания гидрорежима рек и гидротехники;
3. Постройка сплошных насыпей для железных и шоссейных дорог;
4. Выемки грунта для насыпей с оставлением заброшенных ям.

По всей вероятности, образование и последующее развитие болот надо отнести также ко времени покорения Абхазии турками (XVI—XVIII вв.), когда на побережье начало постепенно угадаться всякая культура. Об этом факторе указывал еще 300 лет тому назад итальянский миссионер Арканджело Ламберти (53). Ту же мысль разделяют А. Л. Ростовцев (81) и многие другие.

Общая площадь нижней ступени в Кодорско-Гагидском районе превышает 150 кв. км и представлена несколькими заболоченными секторами (уровнициами?).

Сильно заболочена восточная часть кодорской долины, не имеющая ни одного естественного колодчора. Она своими сильно заболоченными ольховыми лесами противоположна пренебреженной (р. Малой Кодори и др.) и сравнительно сухой зап. части долины.

Между р. Кодори и г. Очамчира болота тянутся узкой полосой (3—4 км) вдоль морского берега. Заболоченность выявлена здесь особенно резко по берегам медленно текущих рек (Цхургилисцкали, Тумуши, Цхенисцкали, Мокви и др.) преимущественно в их устьевых частях.

В западной части г. Очамчира, между полотном железной дороги и шоссе Сухуми—Зугдиди, находится болотный массив «Адзыява» (у устья одноименной речки), общей площадью около 85 га. Он представляет пизонную, местами сильно заболоченную местность, с отметками от 1 до 2 м над уровнем моря. Во время дождей весь массив превращается в непроходимое болото вследствие отсутствия стока для воды (перекрыт у берега насыпью для шоссе и водопотбойной стеной, а раньше береговым валом, впоследствии разрытым) и очень высокого стояния грунтовых вод.

Весь массив покрыт осокой, ситником, местами тростником, а из древесных здесь господствует молодая заросль ольхи.

К югу от р. Галиаги до р. Ингури тянется так называемые Самурацанские болота, представляющие цепь нескольких междуречных заболоченных массивов: Илорские, между реками Галиага и Анариа, Джокобские, между последней и Окуми; Эрикасарские, между реками Окуми и Гагиды; Пинора-Квионские, между реками Исарети и Гагида и др.

На северо-восточном углу Джокобского массива лежит грун-
на озера под общим названием Бебесыр. Эта группа состоит из трех озер: Большой Бебесыр, представляющий собой довольно крупный водоем очень неправильной формы, просто Бебесыр — небольшое озеро, расположенное рядом с первым, и, наконец, Малый Бебесыр в 3,5 км к югу от Большого.

Окружающая их местность представляет собой ряд бугров, покрытых лесом и постепенно понижающихся по направлению к морю. Более или менее обширные болота примыкают к этим озерам со стороны моря: с запада, юго-запада и юго-востока. Оз. Б. Бебесыр имеет естественный сток в виде вытекающей из его юго-западной части р. Джокобы. Последняя имеет медленно текущую, почти стоячую воду, сильно заболочена и протекает среди тянущегося по ее обоим берегам обширного болота.

По существующим воззрениям, Бебесырские озера реликтово-вого происхождения (75). Нам кажется, что оз. Большой Бебесыр, а также и другие озера этой группы гидрогенного происхождения. Они лежат в наиболее углубленных частях русла реки Джокобы и ее притоков, т. е. углублениями, созданными эрозией р. Палео-Джокобы за четвертичное время.

В прибрежной полосе Южной Абхазии известны другие категории водосборов — лагуны, образующиеся естественным образом у впадения рек в море и приобретающие иногда характер небольших озер. Они бывают обычно сильно заболочены, и к ним примыкают более или менее обширные болотистые пространства.

Большая часть Самурзаканских болот (Чубурхинджский Гудавский, Репо-Шепелетский и др. массивы) в результате осуществленных работ и забот местного населения потеряла свой первобытный облик и теперь представлена сельскохозяйственными угодьями, но значительная их площадь пока еще остается почти нетронутой.

В таком положении находятся Гагидские болота, расположенные между шоссе (Гали — Гагидский лесопильный завод) и береговым валом. Значительная часть болот занята торфяником (площадью около 30 га). Здесь сверху лежат оглеенные почвы до 1 м мощностью, а под ними — тонкий слой погребенного торфа (0,3 м), подстилаемый морским песком. Растительный покров состоит из зарослей ольхи, ситника и тростника.

Основным ландшафтообразующим типом лесной растительности является ольховый лес (Alnus barbata). Кавказский граб также играет весьма значительную роль в образовании типов низовых лесов и развивается сплошь и рядом на избыточно увлажненных и даже заболоченных местах.

По мере повышения местности и уменьшения степени увлажнения роль граба как эдификатора значительно возрастает, и грабовые леса становятся основным ландшафтообразующим типом для верхней ступени.

Ольховые леса этого района по всей площади далеко не однородны, и нередко здесь получают развитие смешанные типы с участием ясени и ильма. На сильно заболоченных участках (особенно вдоль рек) очень часто заметна значительная примесь лапни (Pterocarya eucasica).

Ильмы и ясень являются весьма ценными породами, которые
уже с давних пор усилению вырубаются для хозяйственных целей. Этот фактор (выборочной, а местами и сплошной рубки) приводит обычно к развитию вторичных ольховых лесов.

Кроме того, в тех участках ольховых лесов, которые подвергаются выборочной рубкой, получают пышное развитие травянистая и кустарниковая растительность, в особенности ежевика и осока.

Основные закономерности смены лесной растительности под влиянием указанных факторов А. А. Колаковскому представляются в следующем виде (47).

Порубки и выпас скота в ольховых лесах болотного типа приводят обычно к развитию осоковых и ситниковых болот, на участках умеренного увлажнения — к развитию зарослей ежевики, часто вместе с папоротником орляком или, в конечном итоге, — к луговой растительности выгонов. Вторичные осоково-ситниковые болота, также подвергающиеся воздействиям, тоже постепенно сменяются лугово-болотной растительностью выгонов, но иного флористического состава.

В условиях более умеренного увлажнения и при значительной интенсивности выпаса (верхняя ступень), в особенности в ближайших окрестностях сел, ольховый лес обычно сразу сменяется растительностью выгонов с сохранением, однако, переходной комплексной стадии с куртинами порослевой низкой ольхи на фоне вторичной выгонной растительности.

При отсутствии процессов заболеваний на месте ольхового леса развивается более ценная по своему кормовому значению выгонная растительность с преобладанием рейгреса и ползучего клевера.

Выход травяной массы с участков выгонов весьма незначительный, но флористический состав их в кормовом отношении довольно благоприятный. Злаки и клевер здесь нередко являются доминирующими видами, но вместе с тем получают развитие также малолетние виды, как Brunailla vulgaris, Potentilla reptans и др. Нередко большого обилия достигают сорняки, часто с очень низкими кормовыми качествами, и даже ядовитые травы, как, например, Euphorbia stricta, Anthemis cotula, Ranunculus repens и др.

Необходимо отметить, что выгоны занимают весьма значительную территорию данного района и являются основной кормовой базой для животноводства, особенно зимой. Этому способствуют и благоприятные климатические условия. Здесь (в зимой) не образуется устойчивый снежный покров. Иногда его совершенно не бывает, и животные имеют «естественный» корм круглый год.

Озерно-болотный ландшафт Южной Абхазии нельзя представить без присутствия характерной для него своеобразной фауны. Из млекопитающих здесь встречаются шакалы, лисицы, зайцы, ежи. Из земноводных почти повсеместно распространены: лягушки, квакша, кавказская жаба, в большом количестве водится болотная черепаха. Оседлыми птицами тут являются утки-крыжовы, чирки-свищунки, пастушки, погонщики, тростниковые овсянки, серые цапли, голубые зимородки. Летом озера и болота оживляют-
сий пением камышевок. В зарослях устраивают гнезда цапли и выли, камышевые луны кружат над болотами. В результате осушительных работ свой последний день доживает комар, рассадник малярии.

2. Лечкопский район находится на территории Гумистинского сельсовета, по обеим берегам р. Гнилушки, в 3—4 км (к западу) от центра г. Сухуми, и ограничен с севера полотном железнной дороги, а с юга и запада — шоссе Сухуми — Нижняя Ешера.

Весь район сильно заболочен и имеет сравнительно низкие отметки, в особенности в восточной и юго-восточной части. В связи с этим значительная часть района покрыта водой, которая спадает только в засушливые месяцы.

Большая часть этого болотистого массива заторфована. А. Д. Менагаришвили (66) в восточной части участка обнаружил слой торфа 30 м мощностью. В очерке по гидрогеологическому и почвенному состоянию территории г. Сухуми для этого участка указывается глубоко погребенные залежи торфа, тянущиеся вплоть до центра города. В упомянутом очерке, составленном в 1937 году, приводятся данные о наличии погребенных торфов, залегающих на глубине до 9 м от поверхности почвы и имеющих 1—2 м мощности.

По данным А. Д. Менагаришвили (66), общий запас торфа (занимающего площадь 22 га) составляет около 65 тыс. тонн.

Основная часть массива, особенно торфяной участок, покрыта мелкими зарослями ольхи, а также осокой, тростником и ситником, которые являются здесь основными торфообразователями.

В связи с тем, что город растет в этом направлении, многие участки (восточные) данного массива уже осушены. Остальная его часть используется пока для выгона скота, но в недалеком будущем, по мере роста города, видимо, станет необходимым проведение полного осушения всего массива.

3. Пицундский район представляет собой дельту р. Бзыби, обращенную своим острием на юг к морю, общей площадью более 15 кв. км. Пицундская низменность с трех сторон окружена грядой холмов и выделяется как самостоятельный географический микрорайон.

Поверхность ее представляет плоскую равнину, слегка нарушенную песчаными буграми. Так как наиболее повышенными частями дельты являются приморские валы (до 4—5 м над у. м.), то значительные участки территории в расстоянии 3—4 км от берега моря, с отметками 1—3 м, оказываются запертными внутри страны.

Приморские валы задерживают сток вод, в изобилии стекающих с окружающих возвышенностей. Следует отметить, что почти ни одна из мелких речушек, текущих здесь и бываящих очень полноводными во время дождей, не достигает моря. Только р. Цара имеет доступ к морю и то лишь в тихую погоду. Вследствие этого происходит заболевание всех пониженных пространств, и Пицундская низменность подобно Южно-Абхазской (Самурзаканской) изобилует болотами.

Пицундская низменность так же, как и вся низменная равнина
Абхазии, образована аллювиальными отложениями. В образовании ее большее участие приняла р. Бзыбь, которая в антиную эпоху входила в море не к северу от мыса, как теперь, а к юго-востоку от него. Своим образованием Пицундский мыс обязан также аллювиальному береговому потоку, материалы которого и слагают его северо-западную часть. Таким образом, Пицундская низменность является псевдо-дельтовым образованием.

Значительное место занимают здесь отложения торфа.

Как показали исследования А. Д. Менагаршвили (66), общая площадь торфяного болота превышает 345 га, из них с мощностью до 2 м — 124 га; центральная часть с мощностью 6 м занимает 221,7 га, в некоторых пунктах мощность растительного торфяного слоя достигает 15 м (общий запас торфа — составляет около 1,565 тыс. тонн).

Торфяники Пицундского мыса относятся к типу низменно-топяных болот с характерным для этого типа ботаническим составом. Торфообразователями здесь являются: осока, тростник, хвощи, рогоз, снитьник, яснотка, а также древесные породы: ольха и ива.

Торфяное болото большую часть года покрыто водой (высокой 0,4—1 м), что обусловлено сравнительно низкими отметками над уровнем моря (1—1,25 м) и отсутствием правильной системы осушения.

На Пицундской низменности имеется несколько озер. Самое большое из них оз. Инкит лежит к северо-западу от Пицундского монастыря, на расстоянии 4 км от него. Озеро Аныщары находится почти рядом с монастырем. Кроме них в Пицундском районе есть еще три небольших озерка; одно из них неподалеку от оз. Инкит — Змеиное, два других — около оз. Аныщары. Эти озера лежат в сильно заболоченной местности и весьма трудно доступны.

По существующим воззрениям, озера Инкит и Аныщары являются отделенными от моря остатками древнего морского залива, бывшего некогда гаванью античного города Питуна. Данные нивелировки местности, проведенные А. Л. Ростовцевым (81), говорят в пользу такого предположения, ибо, как говорит этот автор, берега оз. Аныщары лежат почти на одном уровне с морем. Из другого профиля видно, что оз. Инкит только на 0,7 м выше уровня моря, а его дно лежит метров на 6 ниже уровня моря.

Но проведенное В. П. Малеевым достаточно подробное изучение водной растительности этих озер (56,57) показало, что, несмотря на небольшое расстояние между ними, растительность их весьма различна. В озере Аныщары обильно представлен реликтовый палеоарктический элемент, мало обычный для пресноводной флоры Кавказа. Растительность оз. Инкит гораздо более тривиальная и почти не отличается от растительности заводей реки и вообще водосборов недавнего происхождения. Эти данные, видимо, указывают на различные пути происхождения их.

16 По карте Архипова (1903 г. и э.) р. Бзыбь пересекала теперешнюю плоскую равнину и впадала в Пицундскую бухту.
Оз. Инкит отличается сильною заболоченностью, особенно весной, когда, переполняясь водой, оно выходит из берегов и затапливает соседние болотистые низины. Водная растительность здесь развита чрезвычайно сильно, хотя она и небогата в видовом отношении.

По В. П. Малееву (56), в прибрежных зарослях озера преобладает ситник, очень много рогоза, меньше ежеголовника, местами начинает преобладать тростник (Phragmites communis). Водная растительность состоит, главным образом, из роголистника, который образует густые заросли. Затем много водяной лилии, желтой кувшинки, дрества и, наконец, болотного ореха. Последний растет только в восточной и юго-восточной частях озера, образуя вдоль берега густые заросли. Сейчас эти заросли соответствуют местам с иллистым дном — в других местах дно озера состоит из песка и гальки.

Гораздо разнообразнее и интереснее растительность оз. Аныщара. Это озеро по размерам уступает оз. Инкит и сильно забытено. В этом озере В. П. Малеевым была найдена (56) целая колония реликтовых видов. По его данным, прибрежные заросли этого озера состоят из преобладающих здесь тростника, рогоза и Iris pseudacorus. Но, наконец, найдены редкие для этой флоры обычные виды цикута (Gleeta viridis), вахта (Menyanthes trifoliata) и обильный Nymphodium thelypteris; они растут не только по берегам озера, но и на его кочках. На берегах озера попадаются ситник и Cupetus radians.

Среди водной растительности озера также находится ряд обычных форм: Nuphlaea alba, Nuphlae intemum, Ceratophyllum demersum и др. В незначительном количестве встречается болотный орех, не образующий здесь сколько-нибудь заметных зарослей. Но, кроме этих обычных форм, здесь найдены также следующие редкие виды: огромное количество пузырчаток (Utricularia vulgaris), переполняющих озеро; значительно меньше U. minor, много Salvinia natans и, наконец, Hydrocharis morias. Таким образом, мы имеем здесь колонию из редких и необычных для данной флоры видов, которые придают озеру совершенно новый и очень своеобразный характер.

Остальная большая часть района покрыта лесами и болотами, во многих местах трудно проходимыми или совсем недоступными. Эти болота покрыты характерным для Колхиды болотным лесом с преобладанием ольхи и липы. По направлению к морю местность становится все более сухой и соответственно этому меняется характер растительности. Сначала узкой полосой, а потом все расширяясь к западу, тянется смешанный лес. В этом лесу много самшита, ясеня, кавказского граба, клена, изредка клекача. В. П. Малеев (57) еще в 20-х годах указывал на наличие в этих лесах бука, однако в настоящее время он почти сведен на нет.

По мере движения к морю все чаще начинает попадаться грабинник, вытесняющий более влажные виды и конкурирующий с Пицундской сосной.
За время существования Советской власти этот район стал неузнаваемым. Многие массивы болот осушины и на их территории созданы три крупных совхоза (циркусоводческий, овощной, молочный), птицефабрика и ряд колхозов, снабжающих продуктами курорты Абхазии.

в. Подзона повышенной равнины

Как известно, обычно с повышением местности температура понижается. На абхазском побережье падение температуры на каждые 100 м у поверхности земли в общем составляет 0,8°. Но благодаря температурной инверсии, зимой охлажденные, вследствие излучения деятельной поверхности, нижние слои воздуха, в связи с большим удельным весом, застаиваются у земной поверхности и тем самым искажают нормальный высотный градиент. Это вызывает на некоторой высоте не падение температуры, а ее повышение. Поэтому наиболее теплая часть побережья находится в пределах 50—200 м над уровнем моря, что соответствует подзоне повышенной равнины Абхазии.

Здесь средняя температура самого теплого месяца (августа) составляет 22—23°, зима мягкая (+4—5°), резкие понижения (—13—15°) температуры редки, вегетационный период для субтропических культур продолжается в течение 240—250 дней, средняя годовая температура достигает +13,5—14,5°.

Кроме того, по мере подъема местности сумма осадков заметно нарастает, и в этой подзоне в среднем за год превышает 1400 мм.

Все это вместе взятое обусловливает максимальную выраженность умеренно-теплого и влажного «субтропического» (морского) климата и энергичные процессы выветривания, смыка и почвообразования.

Подзона повышенной равнины является полосой преимущественного развития четвертичных террас. В настоящее время морские террасы в основном размыты и почти на всем перекрыты алювиально-делювиальными отложениями. Большинство террас вытянуто вдоль рек. В местах выхода рек на приморскую равнину террасы расширяются, границы между наносами разных рек стираются и отложения их образуют одну слитую общую платформу. Северная же ее граница очень извилиста и местами вклинивается глубоко в область высоких предгорий.

Почти по всей подзоне террасы претерпели нарушения эпирогенического характера, в результате чего они выведены из своего первоначального горизонтального положения и имеют заметный наклон к морю. Наклон выражен тем резче, чем древнее терраса по возрасту.

В связи с этим почти вся полоса распространения четвертичных террас в отношении форм рельефа имеет холмисто-равнинный характер. Такой характер носит она особенно в Южной и Северной-Западной Абхазии, где максимально проявились вертикальные движения за весь четвертичный период и повлияли за собой врезание рек не только в свои наносы, но и на подстилающие их третичные породы, в результате чего обособились холмы останцев предыдущих террас, составляющие в настоящее время водоразделы между реками.
Процессы выветривания на террасах разного возраста и положения протекают по разному. Нижние террасы еще молоды, слабо захвачены процессами выветривания и в значительной мере сохраняют свой первоначальный характер. Что касается высоких, более древних террас, то они уже очень резко отличаются по продуктам выветривания от наносов нижних террас. Вышелачивание в них оказалось настолько сильным и глубоким, что они покрыты очень светлыми, почти белыми резко подзолистыми почвами.

Эта подзона, как более благоприятная для заселения, подвержена максимальному воздействию человека, несмотря на то, что здесь трудно бороться с лесом, в связи с его пышным развитием. Теплый и влажный климат способствует весьма буйному росту растительности; так, местность, бывшая под кукурузным полем, в один-два года зарастает 5—6-метровым молодняком ольхи (через 5—6 лет достигает 12—15 м высоты), чрезвычайно быстро разрастается напоротник-орляк и др.

Основными ландшафтобозразующими типами этих лесов являются ольха (Alnus barbata), кавказский граб и дуб (Quercus incana, Q. Hartwissiana).

Ольха является космополитной растительностью и встречается почти во всех ландшафтных зонах Абхазии, но варьирует довольно сильно в зависимости от топографического положения. Она весьма характерна для нижней полосы данной подзоны, а также богата представлена в понижениях и затененных местах.

Таким же жизнеспособным является граб, посев которого особенно хорошо прослеживается на прерывистой полосе сильно оподзоленных почв.

Дубовые леса в связи с их большим хозяйственным значением, а также на основании существовавшего поверья 19 почти нацело уничтожены человеком, и их прежние места заняты культурными участками или зарослями ольхи, граба и напоротника-орляка. Несколько сохранившийся от порубок участок дубового леса отмечается в районе сел. Моква.

Кроме этих трех основных ландшафтобозразующих видов, в этой подзоне в качестве примеси участвуют: ясень, клен, белый тополь, каштан (Castanea sativa), бук (Fagus orientalis). Два последних предпочитают умеренные возвышенностности, но встречаются и гораздо выше.

Подлесок представлен орешником, остролистом, понтийским рододендроном, падубом, изгильцем, лавровищей. Первые три предпочитают затененные и более сырые места, последние являются вечнозелеными и более характерными для холмисто-предгорной зоны. Здесь они встречаются только на более сухих местах обитания (в верхней, переходной полосе).

Необходимо отметить присутствие весьма характерных для этих лесов лиан. Н. М. Альбов, Н. И. Кузнецов и др. ботаники

19 Согласно С. Т. Званба (32), между абхазами существовало поверье, что гром преимущественно бьет в дубовые деревья, но в грабовые никогда; и поэтому, если вблизи абхазского жилья появился дуб, то его уничтожали с корнем, граб же нарочно разводили около жилья.
считали «лиановый лес» за первый тип колхидского леса. Но, согласно последним исследованиям (В. П. Малеев, Н. Кецховел, А. А. Гроссгейм), лианы вовсе не характерны для первобытного колхидского леса. Они раньше были приурочены к опушкам леса, и их современное широкое распространение есть результат рубки и выжигания, производившихся человеком в этих местах с незапамятных времен.

Помимо перечисленных выше, здесь встречаются вечнозеленая лиана — колхидский плуг, виноград (Vitis silvestris), обойник, ломонос и др.

Довольно часто в лесу встречаются в диком виде грецкий орех, яблоня, гранат, груша, яблона, черешня, альча, и др. Заметное распространение получила серебристая акация и ряд видов эвкалипта.

В связи с хозяйственной деятельностью человека, растительность этой подзоны весьма непостоянна в своем составе, не представляет непрерывного целого на всем своем протяжении и часто отсутствует вовсе.

Эта подзона имеет облик «культурного» характера и помимо островных, сильно нарушенных, лесных участков представлена дорогами и поселениями, состоящими из множества далеко разбросанных друг от друга усадеб. Они окружены угодьями: садами, огородами, чайными, табачными, туповыми и другими планами, кукурузными полями и др., которые почти незаметно переходят одно в другое.

В связи с этим этой подзоной свойственны в основном те животные, которые более или менее привыкли к близости человека. Из млекопитающих следует отметить лисицу, шакала, зайца, барсука; из птиц — ястреба, серую ворону, воробья, щегла, жаворонка, ласточку городскую (в летний гнездовой период) и др.

4. Южно-Абхазский район занимает среднее течение рр. Тумуш, Дгамыш, Мокви, Галиги, Окуми и Эрискали. Начинается он узкой полосой (3—5 км) от р. Маджарки, расширяется у меридиана г. Очамиренр (10 км) и заканчивается довольно обширным пространством на побережье р. Ингури.

Район сложен третичными неэвгестовыми отложениями и четвертичными конгломератами с сильно расчлененной серией четвертичных террас.

На почвообразовании здесь сильнее сказывается влияние влажного «субтропического» климата, чем и объясняется большая пестротка почвенного покрова.

Основной фон представлен подзолистыми почвами на красноцветной коре выветривания. В верхней полосе (100—200 м) данного района лежит красноцветная (красноземная, по М. Н. Сабашвили) кора выветривания. Она здесь не имеет сплошного распространения, а представлена лишь отдельными узкими пятнами в местах наиболее сильно расчлененного рельефа древне-четвертичных террас (г. Гали, сс. Пирветли Гали, Кохора, Речко-Цхили, Антвара, Царче, Квитеули и др.)

В нижней полосе (50—100 м) красноцветные почвы сменяются подзолистыми. Между ними переходными являются оползенные красноземы. В свою очередь подзолистые почвы, ниже по падению местности, сменяются почвами переходного типа от бо-
лотных к подзолистым (аллювиально-заболоченные, подзолисто-глеевье и дерново-глеевые), окаймляющими с северной стороны основную массу озерно-болотного ландшафта. Большая площадь их теперь использована под культуры чая, табака, тунга и др.

Использованию этих почв во многом способствует сравнительно спокойное их положение (слабо волнистый характер рельефа), дающее возможность применения широкой механизации. В связи с этим растительность этого района максимально видоизменена и в основном носит «культурный» характер.

5. Дурипшский район представляет собой плоское плато, обусловленное его тектоническим строением, почти полностью отвечающим так называемой Гудатской депрессии. Район занимает среднее и нижнее течение рр. Хипсты и Гудоу с максимальной длиной около 15 км и шириной в 10 км.

Все плато имеет по направлению к горам равномерный и пологий подъем, незаметный глазу наблюдателя. Редкие и неглубокие балки с пологими склонами, многочисленные свежие и глубокие карстовые воронки, западины и провальные озера разнообразят его однородную поверхность.

С поверхности плато сложено толщей красноцветных глин общей мощностью около 5—7 м. Под покровом глины залегают конгломераты (мощностью 10—15 м), состоящие почти исключительно из известняковой гальки, плотно сцементированной известковым цементом. Под конгломератами залегают темные третичные глины.

Возраст известняковых конгломератов еще окончательно не установлен. По-видимому, это сцементированный известком алювиев древнего выхода р. Хипсты. Незначительная абсолютная его высота и отсутствие дислокационных явлений делают весьма вероятным определение его возраста как нижнепермского.

Присутствие редкой щебенки и гальки во всей толще глины, отсутствие какой-либо отсортировки и слоеватости заставили А. Чернякova (100) считать красноцветные глины Дурипшского плато отложениями какого-то древнего селевого потока. И. А. Шульга на основании ряда почвенных разрезов, заложенных на плато, наоборот, и совершенно правильно склонен рассматривать красные глины, как элювиев подстилающих их известняковых конгломератов.

Для понимания формирующихся на плато почв важно их свойство высокой водопроницаемости, обусловленной, несмотря на тяжелый механический состав глины, своеобразной ореховатой структурой. Это обстоятельство усугубляет высокое дренирующее влияние постели, сложенной рыхлым известняковым конгломератом, и интенсивные процессы карстообразования.

Дурипшское плато является исключительно интересным и оригинальным карстовым районом.

В отличие от карста в рыхлых породах центральной части Мегрелии, здесь весьма хорошо развиты как подземные, так и поверхностные формы карста.

Почти все плато изобилует длинными пещерными тоннелями,

20 См. примечание редактора в работе А. Чернякova (100).
воронками, впадинами и провальными озерками, попадающимися через каждые 300—400 м.

Весьма характерной чертой всех пещер Дурипского плато является значительная длина и резко выраженные формы механической эрозии.

Последнее обусловлено, по-видимому, вертикальным воздыманием прибрежной полосы и соответственным понижением базиса эрозии за четвертичное время. Это усилило глубинную эрозию рек на поверхности конгломератового плато и выработало множество поверхностных и особенно подземных карстовых форм рельефа.

Карст Дурипского плато представляет типичный пример покрытого карста. Поверхностные формы (воротки, западины, котловины) здесь образуются путем механического уноса водой глинистого материала покровной толщи в полости, поноры и пещерные тоннели. По стенкам понор-вороток и над пещерными тоннелями (свод пещеры) происходит обвалование глуб конгломератов.

Эволюция рельефа Дурипского плато Н. А. Гвоздецкому (14) представляется как вскрытие подземных водотоков путем слияния развивающихся над ними воронок и постепенного обрушения естественных мостов-перешек между воронками. Вскрытые же водотоки будут глубоко врезаны в подстилающую конгломераты глинистую третичную толщу.

В составе растительного покрова Дурипского плато, которое заселено довольно плотно, преобладает культурная растительность. Здесь на желтоземных и буроземных почвах получила широкое распространение ценную культуру чая.

В хозяйстве района немалую роль играет табаководство и зерноводство (кукуруза), а также разведение огородов и садов (груша, яблоня, хурма, айва, гречкий орех и др.). В связи с карстом основной проблемой района является водоснабжение хозяйства.

6. Леселидзевский район. Западнее р. Хошпурс отроги Гагрского массива несколько оттекаются от морского берега. В связи с этим здесь опять появляются все основные ландшафтные зоны и подзоны, встречающиеся в Южной Абхазии, но представлены они здесь в миниатюрных масштабах и быстро сменяют друг друга.

Район Леселидзевской повышенной равнины занимает нижнее течение рек Псоу, Лапста, Мехадырь, Хошпурс и примыкает к предгорно-холмистой зоне. Промежуточные реки (Лапста и Мехадырь) дают этот район в виде трех полог лытных уклонов в южном и юго-восточном направлении эрозионных массивов, идущих почти параллельно друг другу. Они имеют низкие пологие вершины, с отдельными небольшими холмиками, сложенными песчаниками и глинистыми глинами.

В связи с большим количеством осадков (1300 мм), слабой эрозионной устойчивостью слагающих пород и систематическим воздействием их склоны местами круты, смыты и расчленены балками.

Ниже по падению местности равнина имеет более спокойный, мягкий рельеф, сопровождающийся сильно размытых четвертич.
нимы морскими террасами. Они лучше сохранились в районе между рр. Посо и Лапста, где насчитывается до 3-х террас, сложенных песчано-галечниковыми наносами и подстилающими глинистыми сланцами.

Речных террас выделяется также три.

На древнеморских и речных наносах развиты подзолистые почвы с орштейновым горизонтом, которые здесь считаются одними из лучших почв для культуры табака. Почвы эти занимают более спокойный мягковыраженный рельеф (преобладающие склоны в 5—15°) и позволяют за небольшим исключением применение механизации в сельском хозяйстве. Табаки выходят здесь высококачественные, но с небольшим урожаем. Занимают они большей частью склоны южной экспозиции, богатые солнечным светом и теплом.

Климат данного района теплый (января +5, среднегодовая +13—14°) и влажный. Это создает благоприятные микроклиматические условия для возможности развития цитрусового (особенно мандарин) хозяйства на склонах южной экспозиции и на платообразных вершинах холмов, хотя этот вопрос до сих пор не получил здесь положительного разрешения.

Нижние долины рек и приморская полоса низменности представлены, главным образом, аллювиальными большей частью обеспеченными питательными веществами почвами. Они высоко ценятся населением, как плодородные, легко поддающиеся обработке и дающие возможность применения широкой механизации. В связи с этим неиспользованными здесь остаются только открытыми участки сплошного галечника и места заболоченные, большей частью занятые лесами (ольха, лапина, граб).

Леселидзевская повышенная равнина почти сплошь используется под огороды, сады (слива, черешня, греческий орех, груша, яблоня) и табачные плантации, а также частично под кукурузу, пшеницу и кормовые травы. Травы косят здесь до 3-х раз и усевают спаривание по два урожая огородных культур.

В 1954 году здесь на территории колхоза им. И. В. Сталина с. Леселидзе, на площади 5 га, впервые в Абхазии был посев сахарного тростника.

Колхозные новаторы выработали агротехнику возделывания этой тропической культуры в условиях Абхазии. В дальнейшем возделывание этой культуры намечается и в других колхозах Гагрского района.

Сахарный тростник нетребователен к почве. В условиях Абхазии он, кроме основного урожая, дает 3—4 сбора зеленой массы (более 250 центнеров с гектара), что расширит кормовую базу для животноводства.

II. Зона холмисто-предгорного ландшафта

Холмисто-предгорная зона в основном расположена между повышенной равнинной и зоной среднегорно-карстового ландшафта и находится в том высотном поясе, в котором распространены типичные колхидские леса.
Эта зона совпадает с районом холмистых террасированных предгорий Абхазии, выделенных Б. Ф. Добринским и соавторами (41), а также соответствует западной части «Понтийского (Колхидского) района предгорий Б. Кавказа» П. А. Гвоздецкого (15).

В пределах Абхазии эта зона сравнительно узка (средняя ширина 4—5 км), притом в местах плотного подхода к берегу известняковых хребтов (Тагра, Новый Афон) разорвана на отдельные части.

В строении рельефа данной зоны основную роль играют третичные отложения. В связи с их общим моноклинальным падением в сторону моря, литологически выделяется несколько свит, всегда резко отличающихся в рельефе друг от друга: 1. конгломераты плиоцен, 2. мергели и глины понта-эоцен, 3. известники палеогена и верхнего мела.

Денудационные и эрозионные процессы при очень слабом сопротивлении глин и мергелей обусловили в районах их распространения всхолмленный, слабоволнистый рельеф с мягкими контурами, пологими и покатыми склонами, образующими довольно глубокие впадины с развитием оползней.

Конгломераты и известняки, являясь более устойчивыми породами и характеризуясь сравнительно высокой сопротивляемостью эрозии и денудации, обусловливают возникновение многочисленных каньонов, оврагов и вообще резких очертаний рельефа.

В полое распространения верхнемеловых и третичных известняков развиты карстовые процессы, безусловно значительно уменьшившие поверхностный сток, а, следовательно, и снос, и сыгравшие большую роль в сохранении известняковых массивов, близких к своей первоначальной форме.

В расчленении рельефа предгорной зоны большую роль сыграли тектонические движения и гидрографическая сеть. Они во взаимосвязи с Черным морем создали целую серию террас, из которых в данную зону попадают только самые древние и высокие, подвергшиеся сильному эрозионному расчленению.

От топографии местности и литологического состава пород строго зависит характер почвенного покрова.

Антиклинальные поднятия, сложенные сланцеватыми мергелями, покрыты комплексом глинистых перегнойно-карбонатных почв.

Оползни, смывы, а, с другой стороны, водонепроницаемость глин в долинах и депрессиях обусловливает в ряде случаев полное отсутствие каких-либо почв.

Резкое очертание конгломератовых гряд влечет за собой интенсивные и постоянные смывы продуктов выветривания и мелковозема. Обновляющиеся после смывов древние горизонты коры выветривания дают мелковозем значительного медленнее. В связи с этим здесь формируются почвы малой мощности, большей скелетности и грубого механического состава. А разная степень крутоты склонов обусловливает возникновение целой гаммы почв разной степени оподзоленности и смывности.

Плоские вершины и пологие склоны антиклиналей, сложен-
ныне из известняков, способствуют сохранению и накоплению значительных толщ ярко-красных продуктов выветривания.

На красноцветной коре выветривания развиты подзолистые почвы, отнесенные В. А. Ковда к подзолистым Торга Росса (45).

В местах выкорчёвки лесов и распашки склонов линии вызывают разрыв почвенного слоя и обнажение оршетнового горизонта. В этом случае, как отмечает В. А. Ковда, оршетники теряют свою плотность и превращаются в вишнёво-красную почти бесплодную землистую массу («красноземцы»). Очень часто на склонах смываются и сами оршетновые горизонты и субстратом для современного почвообразования служат оглеенные в прошлом горизонты, подстилающие оршетники.

Все это говорит о том, что расчистка лесного покрова и распашка склонов в предгорной зоне Абхазии обязательно должны производиться с большой предусмотрительностью и осторожностью.

7. Южно-Абхазский предгорный район тянется узкой полосой к югу от р. Кодора до р. Ингури. Он изрезан многочисленными реками (берущими начало в верхней зоне), серий параллельных холмистых гряд, поверхность которых имеет часто ровный и плохо形成的 характер. Направление этих водораздельных гряд и расчленяющих их рек довольно однообразно на всем протяжении и почти всегда соответствует падению местности в сторону моря.

Такое характерное строение местности имеет левобережье Кодора, где поверхность предгорной полосы сильно расчленена глубокими ущельями и оврагами.

В сторону же р. Ингури холмистые гряды, в связи с появлением целого ряда антиклинальных поднятий и синклинальных депрессий, не имеют столь закономерного параллельного друг другу направления и отличаются значительно большей неоднородностью топографии местности.

В известняках бассейна рр. Мокви, Речхи и Ингури очень выразительно проявляются карстовые процессы, в геоморфологическом отношении все еще слабо изученные, за исключением пещеры Аблакира.

Обнажение на поверхности различного возраста известняков, конглюмератов и мергелей обусловливает распространение перегнойно-карбонатных почв, которые в комплексе с желтоземными почвами представляют серию переходов от красноцветных и подзолистых почв к почвам горно-лесной умеренной зоны.

Перегнойно-карбонатные и желтоземные почвы в Южной Абхазии наибольшей площадью использованы под кукурузу и табак. Значительное место занимают виноградная лоза, чай и плодовые культуры. Цитрусовые не получили здесь заметного распространения в связи с меньшей защищенностью и большей морозоусвояемостью рельефа Южно-Абхазского предгорного района.

В связи с резким расчленением рельефа, несмотря на обильные осадки (1500 мм), здесь отсутствуют условия заболевания, что вместе с благоприятным температурным режимом (средняя январь +2—3°, августа 21—22°, годовая +12,5) способствует
развитию типичного колхидского леса, выраженного здесь наиболее полно.

Основу его составляют широколиственные листопадные деревья: дуб (Quercus imeretina, Q. iberica), кавказский граб, ольха, каштан и бук.

Здесь в виде более или менее значительной примеси участвуют грабники, ясень, клен, кавказская липа, одичавшая груша, яблоня, черешня, шелковица, инжир, грецкий орех и др.

В подлеске характерно наличие следующих вечнозеленных кустарников: лавровишен, нилгицы, понтийского рододендрона, падуба (C. aquifolium), реже встречается (в ущельях р. р. Гализги, Окуми и др.) самшит (Buxus colchica).

Здесь имеются также кустарники с опадающей листвой: желтый рододендрон, орешник, гранатник и др. В лесах много одичавшего винограда (vitis labrusca).

В пределах данного района и на границе со среднегорной зоной находится Ткварчельское угольное месторождение и термальные источники. Ткварчельские минеральные воды относятся к типам сульфато-хлоридно-кальциевых с содержанием кремниевой кислоты и радона. Всего здесь выявлено около 30 источников. Подобные же источники известны в с. с. Окуми, Ренхи и Гумуриш, но в бальнеологическом отношении они пока почти не изучены.

8. Интересными и довольно оригинальными особенностями характеризуется Сухумский предгорный район, занимающий холмистые предгорья к югу от Нового Афона и до р. Кодори.

Здесь весьма отчетливо выражен комплекс брахантинкинелей и синкинелей, приближенно конглюмератные гряды и террасовые ступени, карстовые процессы и оползневые явления, глубокие ущелья и узкие каньоны. Кроме того, этот район в большой своей части относится к числу наиболее теплых районов Абхазии и снискает в нем значительной ценности, перспективной сельскохозяйственной и культурной зоной всей Грузии.

В окрестностях Сухума рельеф необычайно точно соответствует геологическому строению, обрисовывая иногда, как совершенно справедливо замечает А. Козлов (46), мельчайшие детали тектоники. Этому обстоятельству содействует, главным образом, связанное с ними резкое литологическое различие, встречающихся в данном районе пород. характеризующихся разной сопротивляемостью эрозии и денудации.

Плиоценовые конгломераты, благодаря своей значительной мощности и относительной стойкости, а следовательно, и высокой сопротивляемости эрозии и денудации, образуют довольно большие возвышенност и окаймляют данный район со стороны моря. Наиболее значительная их возвышенность протягивается полосой к юго-востоку от Сухума. Между р. р. Беслетка и Маджарка она подходит почти к самому узлу и достигает 200—300 м высоты, а затем, несколько отступая от берега и постепенно расширяясь от 2 до 6 км, превышает 600 м высоты (Герзелский хребет).

К западу от Сталинской горы (200 м) береговая конгломератовая гряда, постепенно поникаясь и суживаясь, сходит на нет. Здесь она, безусловно, размывается равнинной. Этим только и можно объяснить присутствие конгломератового останца размывания на правобер
режье Гумисты и Нижних Ешерах. В связи с этим, надо думать, что конгломератовые прибрежные гряды занимали здесь в прошлом значительно большие пространства.

Пласти конгломератов, полого падающие на юг, характеризуются моноклинальной структурой. В связи с этим конгломератовая возвышенность в целом приподнята к северу и образует здесь крутые обрывы, падающие с сильно размытой пониженной местности, сложенной третичными глинами и песчаниками. Южная полоса возвышенностей отличается отчетливо выраженным четвертичными террасами.

Гряда прибрежных конгломератовых возвышенностей расчленена целым рядом параллельных консеквентных узко врезанных долин речек (Маджарка, Келасури, Белетка и др.), имеющих вполне юный тип.

Вдоль распространения конгломератов (особенно в окрестностях Сухуми) много больших оползней. Громадные глыбы конгломератов сползают, благодаря вымыванию нижележащих глин, и образуют своеобразные террасы. Оползни глыбы местами сохранились в виде небольших островковых горок.

На правом берегу р. Гумисты, вокруг возвышенности Дызвети (250 м), разбросаны многочисленные чрезвычайно оригинальные холмики и террасы, представляющие оползние глыбы конгломератов. Они иногда достигают берега моря и поднимаются волнами.

К северу от конгломератовых гряд основными элементами тектонаической модели являются антиклинальные и синклинальные структуры обшерзаказского направления.

Ближайшая к Сухуми антиклинальная гряда протягивается в 4—5 км от города. Она заметно приподнимается над приморской конгломератово-возвышенной полосой и древними четвертичными террасами. Вершиной этой гряды является гора Бырца (590 м) и ее западное продолжение—Яштхва (518 м).

К северу от них (между р.р. Кодори и Гумиста) протягивается антиклиналь Ахбок, которая западнее р. Гумисты сливается с вышеуказанными и образует широкую Абахагдажскую возвышенностю.

Все антиклинали, имея сравнительно длинные и пологие (не круче 35°) южные крылья и значительно более крутые (до 90°) и короткие северные—асимметричны и надвинуты на север.

Все они сложены, главным образом, известняковой толщей верхнего мела и палеогена.

Реки, следуя к существовавшему ранее базису эрозии на юг, в процессе продолжавшегося постепенного поднятия прибрежной полосы расчленяли эти гряды в меридиональном направлении и образуют местами чрезвычайно узкие и глубокие ущелья (Белетка, Гумиста и др.).

В известняковой толще антиклинальных гряд очень ярко выражены карстовые процессы. Большое значение в развитии карстовых процессов в окрестностях Сухуми имеют формы древней эрозионной сети в виде сухих поперечных долин, прорезающих известняковые гряды.

На дне сухой долины Восточной Гумисты развиты карстовые котловины более 15 м глубины. Они имеют плавные очертания и
мягкие склоны и ориентированы длинными осями (более 300 м) по простиранию долины.

На склонах антиклиналей много пещер, находящихся в самых разных стадиях развития.

В 16 км к СВ от Сухуми, на левом берегу р. Келасури (при вылете ее из ущелья), расположена замечательная карстовая пе-
щера, известная своими причудливыми сталактитовыми образова-
ниями, колодцами и озерами.

Чрезвычайно своеобразным карстовым образованием, замечательно отличающим ее от других пещер Абхазии, известна пещера Адзаба. Расположена она в полосе синклинального прогиба, на правобе-
режье р. Гумисты, в слоях палеоценовых известняков, в 8—9 км к северу от Сухуми.

Она интересна не только в геоморфологическом отношении (оригинальный и красивый вход, энергичное развитие пещеры и др.), но и своим животным миром, привлекающим внимание зоологов.

На правой стороне сухого ущелья р. Восточной Гумисты (в 7 км от Сухуми) находится т. н. Шромская (Гумская) сталактитовая пещера, известная своими просторными залами.

Кроме того, имеется еще несколько пещер в бассейнах р. Бес-
летки и Гумисты, пока еще слабо изученных.

К известняковым антиклиналам принорочены еще весьма интере-
сные случаи «подземных перехватов» рек. В окрестностях Суху-
ми известны два случая такого подземного соединения рек; вода Келасури подземным путем (около 4 км) проходит в Беслетку, ко-
торая в сухое время года почти всю свою воду получает от первой. Вода Восточной Гумисты подземным путем (около 2 км) проходит в Зап. Гумисту.

Межантиклинальные пониженные пространства представляют синклинальные прогибы и выполнены, главным образом, олиго-
ценовыми глинами.

Между антиклинальными поднятиями Ахбока и Балджа распо-
ложена общирная Шромская (Михайловская) синклиналь. Анало-
гичный характер носит простирание между конгломератовыми грядами и Бырих-Яштхевской антиклиналью, известной по названию Беслетско-Келасурской впадины.

Все синклинали характеризуются довольно мягким рельефом и являются местами наиболее плотного сосредоточения населения.

В олигоценовых глинах, особенно по обоим склонам ущелья р. Беслетки и Келасури, очень часто оползни.

В развитии оползневых явлений значительную роль играют глубокие выемки с крутыми откосами (в трассе дорог) и тяжелые строения на склонах. Много примеров подобного характера имеется в черте города Сухуми.

Расположенные выше горные хребты хорошо защищают Су-
хумский предгорный район от северных холодных течений. В связи с этим, как указывалось выше, он большей своей частью относится к числу наиболее теплых районов Абхазии.

Здесь выражен влажный «субтропический» (морской) тип клиата, с теплой зимой (+2—6° С самого холодного месяца), с высокой среднегодовой температурой (+13—15°), максимальным ко-
личеством часов солнечного сияния (2300) и сумм эффективных температур (более 4500°). Абсолютный минимум температуры не падает ниже —11—15°. Атмосферные осадки выпадают довольно равномерно, и их общее количество в среднем составляет около 1400 мм за год. Здесь, кроме того, не образуется устойчивый снежный покров.

Все это вызывает непрерывность выветривания и почвообразования во все сезоны года и развитие целого ряда почвенных типов и разностей на фоне рассеченногорельефа со сложной литологией.

Растительность района в целом относится к лесам колхицкого типа и представлена, главным образом, грабом на сланцеватых глинах и дубово-буковыми лесами на возвышенностях. Дубово-буковые леса особенно хорошо сохранились на ближайших конгломератовых возвышенностях г. Сухуми (в водоразделе Маджарка — Келасури и Келасури—Беслетка), где они имеют противозероционное и курортное значение. В известняковых ущельях р.р. Беслетка и Гумисты все еще сохранились самшитовые рощи.

Равномерная довольно высокая температура и влажность воздуха, кроме того, благоприятные почвенные условия способствуют здесь культивированию как субтропических сельскохозяйственных культур, так и декоративных растений.

Здесь широко распространены посевы табака, разведение цитрусовых, тунга, фейхоа, культуры чая. Табак является ведущей сельскохозяйственной культурой в западной части Сухумского предгорного района (Сухумский административный район), а чай и цитрусовые в восточной (Гульрипшский административный район).

По всему району в изобилии растут виноград, хурма, груша, яблоня, черешня, мушмула, персик, слива, инжир, алыча, гранат, айва, греческий и мелкий орех и др. Быстро размножается редкое орехоплодное дерево пекан.

Плодовые сады полукольцом окружают курортную зону (Сухуми—Гульрипш) побережья.

В последней раскинулись парки и леса курортного значения. Только в одном Сухуми произрастает свыше 750 тысяч растений, среди которых имеется более 1000 видов деревьев и кустарников умеренной и субтропической зон.

На горе граната (сев. часть города Сухуми) расположен единственный в Советском Союзе питомник обезьян. В настоящее время в питомнике несколько сот животных, большинство которых родилось в Сухуми. Часть из них живет почти в условиях полной свободы. Таким образом, проблема акклиматизации обезьян в Советском Союзе решена.

Редкое сочетание природных богатств: роскошная растительность, мягкий климат и лазурное море — способствовало появлению и росту курортов Сухуми и Гульрипш, где отдыхают и поправляют свое здоровье трудящиеся из всех краев и областей нашей общей Родины.

С каждым годом меняет свой вид Сухумский предгорный район. На склонах холмов и в долинах рек появляются все новые и новые плодовые, табачные и чайные плантации. Курортная зона укрывается новыми зданиями, парками и скверами и постепенно превращается во всеохвую здравницу.
Сухумский предгорный район наиболее освоен под хозяйство и представляет типичный вид «культурного ландшафта» побережья Абхазии.

9. Гудаутский предгорный район лежит к северо-западу от Дурнишского плato, между Пицундой и южными склонами Бзыбского хребта.

В строении его рельефа основную роль играют третичные отложения, состоящие, главным образом, из конгломератов и сланцеватых глин.

В ландшафтном отношении здесь можно выделить два подрайона: восточную узкую (2—3 км) Отхара-Мцарскую-предгорно-холмистую полосу, сложенную, главным образом, средне-сарматскими конгломератами, и придвинутую к морю Мюссерскую (Кахвакскую) возвышенность, сложенную мощными толщами неогеновых конгломератов.

Отхара-Мцарский подрайон лежит вдоль южных склонов Бзыбского хребта и хорошо защищен последним. По многолетним данным, в Мцарах зимняя и среднегодовая температура выше, чем в городе Гудаута, лежащем на берегу моря. В Мцаре также выпадает больше атмосферных осадков (более 1500 мм), чем в прибрежье.

Обильные осадки обусловили сильно расчлененный, холмисто-грядовый характер здешнего рельефа. Заметно плоских горизонтальных поверхностей здесь мало. Узкие и высокие гребни холмов и крутящихся склонов являются характерными элементами рельефа, особенно в полосе распространения конгломератов. Более значительные пологие участки (в виде террасовых уступов) конструированы в районе Верхней Анухвы, Отхары и Мцары.

Сланцеватые глины данного подрайона отличаются очень тяжелым механическим составом, несут признаки отложений, характеризующиеся неразвитыми, страдающими от избыточной влажности почвами. Те немногие участки, которые имеют горизонтальное залегание, характеризуются подзолистыми почвами с орштейновым горизонтом. На склонах Бзыбского хребта развиты почвы с орхисто-красноватым и желтоватым оттенком, а на более пологих склонах (близ Мцара, Мцхета, Отхары и др.) формируются еще более красные почвы. Большую площадь занимают также перегнойно-карбонатные и подзолистые «красноземы». Обе последние разности залегают на склонах, образуя малой мощностью и замедленной скеплентностью. На этих почвах повсюду широко распространены полосы табака, дающие высококачественную продукцию. Сущенную роль в сельском хозяйстве играют также кукуруза, виноградная лоза («изабелья»), чай и плодовые культуры.

Весьма интересен в ландшафтном отношении подрайон Мюссерской возвышенности, расположенный вдоль берега моря, между устьями р.р. Бзыб и Мништа. Он от Отхара-Мцарского подрайона и высокого южного склона Бзыбского хребта отделен сильно эродированной пониженной полосой, сложенной третичными глинями, мергелями и песчаниками. По нему проходят железная и автомобильная дороги от г. Гудаута по направлению к г. Гагра; здесь также находится много культурных участков.

Мюссерская возвышенность состоит из необычайной мощности (около 2000 м) огромной толщи сарматских, неогеновых, пон
тических и киммерийских сильно цементированных конгломератов, образующих почти совершенное однородный и довольно огромный массив площадью около 70 кв. км.

Вся конгломератовая толща дислоцирована и собрана в пологие складки и довольно круто (под углом около 30°) падает к югу. Берег моря здесь высокий, крутой, сильно подмываемый и даже при спокойном море проходящим с трудом. Северный край возвышенности образует высокие и крутые обрывы, возвышающиеся над пониженной полосой. Вследствие довольно значительной общей высоты (200—300 м) и довольно круто го наклона пластов, Мюссерская возвышенность подвергалась сильному эрозионному рассечению.

А. Г. Эберзин (102) описывает здесь чередование неодинаковых по плотности пластов конгломератов, что обусловливает различную степень выветривания, преимущественно типа «сухучного». Часто наблюдаются пещерообразные углубления. Более плотные прослои выступают навесами и карнизами.

Долины речек имеют большей частью крутые или сильно покатые склоны, что объясняется твердостью и заметной степенью водопроницаемостью пластов конгломератов.

Террасовый ландшафт, по мнению Б. Ф. Добрынина (25), имел здесь, по-видимому, широкое развитие. Об этом говорят все еще уцелевшие на крутых склонах кочки-террасы, играющие весьма важную роль для населения, выбирающего их для своих хозяйственных целей (посадки, усадьбы, посевы табака и кукурузы).

По мнению А. Г. Эберзина и Б. Ф. Добрынина, конгломераты Мюссерской возвышенности являются крупнообломочными терригенными материалами, вынесенные рекой Палео-Взыби в верхне-третичное время.

Следует отметить, что описываемые конгломераты участвуют в строении и холмистой полосы правобережья р. Взыби, по направлению к Новым Гаграм, вдоль склона Мамдышского хребта. По А. Г. Эберзину (103), они по своему литологическому и фаунистическому составу тождественные с мюссерскими, а по особенностям пространственного распространения являются продолжением последних на запад.

Таким образом, занятая конгломератами площадь имеет возвышенное очертание, что наводит на мысль о правильности вышепомянутого соображения о происхождении Мюссерской возвышенности.

В связи с большой расчлененностью рельефа и характерными скелетными и недоразвитыми почвами, земледелие здесь очень затруднено, почему и большая часть Мюссерской возвышенности все еще покрыта густым лесом.

Лес здесь дубовый, грабовый и каштановый. На южном обрыве склоне, ближе к Пищунскому мысу, находится насаждение Пищунской сосны, состоящее из сотни крупных деревьев. Они занимают также небольшие площадки на гребнях возвышенностей, где со всех сторон окружены дубово-гробинниковой лесами.

По В. П. Малееву (57), грабинниковые заросли проникают внутрь соснового насаждения, так что сосны стоят впереди с грабинником и сопровождающими его породами. Все это густо перекрыто ежевикой и смилаксом. В подлеске обращает на себя внима-
ние характерный спутник светлых дубово-гробинниковых лесов: многочисленные безлистые к концу лета стебли Рецедея эфире, интересного эндемичного для Западного Закавказья эндемичного.

На примере Пицундской сосной рощи мы видели, что грабинник наступает на сосну в связь с большой его приспособленностью к условиям существования, но сосна, уступая свои позиции грабиннику, в свою очередь, «переползает» на новые песчано-грачнево-субстраты, создаваемые, главным образом, береговым алювиальным потоком.

Эти условия для сосовых насаждений Муссерской возвышенностей исключены, так как здесь с суши наступает грабинник, а со стороны моря идет не только создание новых субстратов для переселения сосны, а даже быстрое сокращение береговой полосы в связи с усиленной морской абразией. Поэтому сообщение В. П. Малеева (57) о том, что здесь уже закончен процесс вытеснения Пицундской сосны ассоциацией дубово-гробинникового леса, следует признать правильным.

10. Гантиадский предгорный район имеет весьма изолированное положение. Он лежит между средними течениями р. Хошунсе и Псуо. На севере примыкает к передовой горной цепи Кавказа, которая отводится здесь на 10—15 км от берега моря, на юге он ограничен с Лесидаевской повышенной равниной.

Кроме холмистой зоны, в пределы описания данного района входят также отроги окраинных хребтов Зырху, Лоховуху и Ампарда, поникающиеся до 600—700 м и сложенные твердыми известняками и мергелями верхнего мела. Здесь рельеф выражен резко и характеризуется наличием крутых склонов, обрывов, глубоких ущельй и балок.

Очень интересна в геоморфологическом отношении долина р. Сандриша, одного из главных притоков р. Хошунсе. Р. Сандриша протекает по синклинальной долине, разделяющей хребты Зырху и Ампарда. Склоны долины несколько асимметричны, очень круты и часто обрывисты. На склонах, сложенных мергелями, развиты оползни. По обе стороны реки сохранились кочки террас в виде неширочных и пологих уступов. Между с. С. Цифлари и Батилири отроги хребтов Зырху и Ампарда очень близко придануты к долине реки и делают ее на восточную и западную часть.

Восточная часть долины представляет котловину в кольце хребтов, поднимающихся от 500 до 1000 м над рекой и создающих весьма неблагоприятные условия для распределения света и тепла в долине. Вследствие этого жители сел. Цифлари в течение двух месяцев (зимой) совершенно не видят солнца.

Западная часть долины шире, прилегающие к реке возвышенностни ниже и дальше отодвинуты от реки. В результате последняя менее страдает от недостатка солнечного света и тепла.

Следует отметить, что в синклинальной долине р. Сандриша ясно видны следы древней эрозионной сети в виде Палео-Сандриша. Раньше р. Сандриша имела течение, по-видимому, через сел. Ампрада, но с течением времени она переместилась в сторону сел. Цифлари, где и протекает в настоящее время. Современная ее до-лина в пределах сел. Цифлари очень каяя и каньонобразная. Во многих местах берега так близко подходят друг к другу, что всякий
смельчак свободно сможет перепрыгнуть через реку. Можно смело утверждать, что недавно здесь эта река протекала под землей и что вскрытие ее кровли — дело недавнего прошлого. Между старой и новой долиной протягивается довольно высокая (250—300 м от уровня реки) возвышенность, а днище сухой долины покрыто довольно мощным делювиальным чехлом.

К югу от сел. Багнари-рельеф получает немного иной характер, и местность переходит в мелко-холмистые гряды. Это обусловлено, главным образом, распространением здесь менее плотных и более рыхлых пород, способствующих эрозии и денудации. Возвышенности имеют падение к югу-западу, по направлению речной сети, в крест простиранию Кавказа.

Стержень карбонатности материнской породы, условия рельефа и экспозиция склона определяют развитие той или иной почвенной разности. По данным А. А. Аскелевой (1), южные склоны передовых хребтов почти полностью покрыты немощными, но плодородными темными перегнойно-карбонатными почвами, содержащими от 3 до 7% гумуса. В холмистой зоне господствуют выщелоченные и оподзоленные почвы, на крутых склонах и склонах южной экспозиции они обычно маломощны и чаще смыты. Большое распространение получают также выщелоченные кислые, слабо оподзоленные почвы, развитые на глинистых сланцах, и почвы с коричнево-оранжевым оттенком на сланцеватых известняках.

Весь район покрыт типичным колхицким лесом. На северных склонах возвышенностей и в долинах широкое распространение получает бук. Почти чистые его леса встречаются на левобережье р. Сандрища, в сел. Цифлиаре, отчего и получило оно свое название («Цифлиаре» по-грузински место, поросшее буком). Освещенные и южные склоны заняты, главным образом, дубом и грабом.

Благоприятные климатические и почвенные условия позволяют развить здесь многообразное сельское хозяйство, не мешает этому сильно расчлененный рельеф, исключая возможность применения широкой механизации. В связи с этим тут большие площади остаются не использованными и покрытыми густым лесом.

Основной отраслью сельского хозяйства данного района является табаководство. Почти все почвенные типы и разности дают хороший урожай табака, отличающегося высоким качеством. Гантиадский предгорный район по праву считается высокоценным и одним из ведущих табачных районов Абхазской АССР.

Табак здесь вполне успешно развивается от 200 до 500—600 м над уровнем моря. Выше его продвижению мешает недостаток тепла, главным образом, во время сушки. Долины страдают от частых туманов, дождей и ветров, и табак там уступает место ккукурузе. Ниже 200 м, сильно конкурируя с табаководством, господствующее положение занимает овощеводство и садоводство.

III. Зона среднегорно-карстового ландшафта

Холмисто-предгорная зона, постепенно повышаясь в сторону Кавказа, упирается в зону средневысотных гор. Последние тут часто достигают 700—1000 м высоты. Они непрерывной цепью хребтов окаймляют холмистые предгорья почти на всем протяжении и,
надвигаясь на них, как бы степной ограничивают прибрежную зону с «субтропическим» климатом.

Основная масса среднегорной зоны Абхазии составлена южными склонами и отрогами Гагрского, Бзыбского и Кодорского хребтов.

Эта зона соответствует Абхазскому району, «Области средних склонов Б. Кавказа» Б. Ф. Добрынина и соавторов (41) и «Известняково-карстовому району Западного Кавказа» Н. А. Гвоздецкого (15) и А. Е. Фединой (97).

В геологическом отношении она соответствует Абхазско-Рачинской подзоне Закавказской пологоскладчатой зоны В. П. Ренгартена (80) и отличается мощным развитием известняков мела и верхней юры.

Ближайшие карбонатных пород ярко сказывается не только на характере рельефа, но и на гидрографии и почвенно-растительном покрове.

Зона среднегорно-карстового ландшафта лежит в переходной полосе, между влажной «субтропической» зоной и относительно более холодно-влажной областью.

Обильные атмосферные осадки (более 1500 мм) и относительно высокие температуры (обусловленные защитно-барьерным свойством Кавказа и частыми ветрами) на общем фоне известняков вызывают тут карстовые процессы и интенсивный темп химического выветривания. В связи с этим эту зону характеризуют резко очерченные контуры склонов, глубокие ущелья и долины рек, карстовые пещеры и подземные реки, с одной стороны, и горнолесные, перегороженные-карбонатные и буроzemные почвы, с другой.

Колхидский лес, столь характерный для предыдущей зоны, обедняясь в качественном отношении, переходит здесь в горный, значительно однообразный, широколиственный лес. Основной зональной формацией являются буковые леса, покрывающие почти все склоны, независимо от их экспозиции, что лишний раз указывает на большую влажность данной зоны. В значительной степени участвуют каштан, дуб (Quercus iberica) и граб. В этих лесах местами хорошо развит вечнозеленый подлесок, среди которого в ущельях и по склонам к долинам рек все еще сохранился самшит.

В некоторых местах горная зона, как бы прорезая полосу предгорий и равнины, приближается к морю, а местами обрывается совсем у его берега. Таким образом, Гагрский и Ново-Афонский хребты. Они, характеризуясь резко выраженным высотными ландшафтными зонами при их быстрой смене, своими южными склонами входят в пределы данного описания и представляют ярко очерченные азональные единицы Черноморского побережья Абхазии.

11. Ново-Афонский район. Рельеф Ново-Афонского района определяется, главным образом, «большой тектонаикой».

Как уже отмечалось, две южные антиклинали окрестностей Сухуми — Бзырчя-Яштха и Ахбок за р. Гумистой, сливаются, образуют широкую возвышенность Абачатыра, которая господствует над сел. Ешери.

Около сел. Псырчя (в верховьях р. Шицукары) известняки Абачатырской антиклинали, по А. Козлову (46), уже скрываются под мергелями, т. е. антиклиналь здесь замирает. Замирает соответ
ственно и синклиналь, отде-ляющая ее от северной антиклинали Ашамгва, в связи с чем южные крылья обеих антиклиналей сливаются. Таким образом, около сел. Псырцха происходит замещение Абхазгарской антиклинали, навинутой с севера, антиклиналью Ашамгва.

Пересякая к западу расширяется и, почти обрывая предгорную полосу, окаймляет степью местность над Новым Афоном при средней высоте около 800—1000 м, а за р. Маанникара (Псырцха) очень быстро и круто погружается.

Ашамгвская антиклиналь приобретает особый интерес в связи со своеобразным характером складчатости.

Как уже отмечалось, все антиклинали окрестностей Сухуми навинуты на север, тогда как Ашамгвская антиклиналь опрокинута на юг, и по ее южному склону проходит значительный разрыв.

По данным А. Козлова (46), к западу от Нового Афона антиклиналь предстает только несколько асимметричной: южное крыло ее круче северного. Но, приближаясь к меридиану Нового Афона, ось ее начинает быстро подниматься, вместе с тем она значительно суживается, и южное крыло сначала становится вертикальным (у гидростанции), а затем, против санатория № 3, уже опрокидывается и дальше разрывается.

Вся гора Ашамгва сложена меловыми известняками и характеризуется многочисленными осьми, обвалами и карстовыми явлениями.

В Новом Афоне известны пещеры Симона Кананита и «Большая сталактитовая». Интересна в геоморфологическом отношении долина р. Маанникара. Речка эта, впадающая в море у самого курorta Новый Афон, берет начало на сев. склоне Ашамгвы, протекает по ее северо-западному краю, потом около Верхней Апухвы круто поворачивает на юг, пропивкая зап. часть антиклинали. Здесь она, во многих местах тающая под землей, оставляет сухую долину на поверхности.

Вдоль антиклинального хребта, в сторону моря, протягивается сложенная палеогеновыми глинами и мергелями весьма узкая холмистая полоса, несколько расширяющаяся в сторону Сухуми. Для западной и восточной ее части характерно широкое развитие оползневых явлений.

Оползни здесь так классически не выражены, как в Сочи-Туапсинском районе Чёрноморского побережья Кавказа, где наблюдаются интересные формы оползневой складчатости коренных пород. Хотя можно думать, что в прошлые геологические периоды (в третичный и в начале четвертичного), вследствие интенсивного воздымания Чёрноморского побережья Абхазии и наклона слоев в сторону моря, оползневые процессы в Ново-Афонском районе протекали более энергично и достигали большей величины, чем теперь. Это подтверждается наличием прерывистой цепи прибрежных контгломератовых гряд на правобережье Гумисты. Некоторая их часть, по-видимому, размыта рекой Гумиста, но большую роль в расчленении и перемещении их на значительное расстояние от первоначальной площади распространения контгломератов, безусловно, сыграли оползневые явления. В связи с этим в прибрежной полосе Ново-Афонского района ясно можно заметить наличие чрезвычайно оригинальных холмиков и громадных оползших глыб.
конгломератов, местами сохранившихся в виде остроконечных горок.

В настоящее время здесь в состоянии движения находятся лишь делювий и элювий (передвижек же коренных пород не замечено). Первый образует верхний небольшой мощности (2—3 м) слой. Это довольно тёмная глина, неоднородного серо-бурого цвета, с несколько рыхлым сложением. Глины же элювиального происхождения залегают непосредственно под слоем делювия и содержат много конкреций. Цвет её тёмный, синевато-серый. Она представляет собой выветрившиеся верхние слои (размокнутых и превращённых в пластичную массу) сих коренных сланцеватых глин от 1 до 10 м мощности.

Коренные синие листоватые глины этого района относятся к Майкопскому ярусу третичного периода. Мощность майкопских глин, по представлениям А. Л. Козлова (46), изменчива. Наибольшей мощности они достигают на правобережье Гумисты (500—600 м), к западу мощность их постепенно убывает и в центре Нового Афона не превышает 100 м.

Движение масс происходит вследствие нарушения равновесия в поверхностных частях, пронизывающегося по склону гор, речных долин и у берега моря. Нарушение равновесия и движение масс обусловливаются, главным образом, подмывом (морскими и речными водами) подстилающих глин там, где они имеют слоистый характер и значительное падение пластов в сторону склона. Этот процесс особенно активизируется во время дождей, когда глины переносятся грунтовыми и почвенными водами.

Влажность оползающих глин весьма велика — 30—35 % (пористость 0,70—1,00) в то время, как устойчивая глина имеет влажность 11—14 % (пористость 0,30—0,39). Такая значительная влажность оползневых глин служит причинной того, что они находятся в пластичном состоянии, вследствие чего сопротивление их сдвигу весьма невелико, в то время как более сухие глины обладают значительным сцеплением и коэффициентом сдвига (86).

Оползание здесь обусловлено создание сильнорасчленённого мелкообручного микрокрельфа без естественного дренажа поверхностных вод. При чрезвычайно мальных коэффициентах фильтрации этих грунтов высокая влажность в них сохраняется даже в случае искусственного осушения. Наиболее увлажненные места приурочены к участкам наибольшего развития растительного покрова. Молодые деревья (в том числе и искусственно насажденные) несколько изогнуты в сторону движения оползающих масс.

Больше всего от оползней страдают склоны, обращенные в сторону моря. В некоторых случаях здесь просто невозможно остановить их движение, поэтому в таких местах железная дорога проведена в тоннеле. Оползни причиняют серьёзные разрушения полотну железной дороги и шоссе, а также приносят ущерб курортному хозяйству и сельскохозяйственным участкам.

Оползни систематически перекрывают абразионный кифл, в связи с чем последний почти не выражен. Несмотря на это темп морской абразии настолько быстрый, что глыбы не успевают разрушаться волнами и быстро перемещаются в сторону абразионной платформы, что, в свою очередь, вызывает активизацию оползневых
явления на склонах, обращенных к морю. В результате борьбы между морем и оползнями очень страдают волноотбойные стены, служащие также и подпорными стенками для тела оползня.

Кроме того, оползни могут образоваться (или активизироваться) от неправильного производства инженерных работ, как, например, при глубоких выемках с крутыми откосами (при прокладке трассы дороги или площадок под строительство), неправильной постановки водного хозяйства, перегрузки грунта тяжелыми сооружениями и др. в оползенно-опасных участках.

Оползневая полоса Ново-Афонского района, наряду с оригинальными природными особенностями, отмеченными выше, характеризуется наличием комплекса противооползневых мероприятий (тоннели, эстакады, акведуки, подпорные и волноотбойные стены, устройство дренажей и др.), проведенных лишь в советское время.

Узкая центральная часть прибрежной полосы Ново-Афон свободна от оползневых явлений. Здесь хорошо выражены три плоских террасы с крутыми уступами между ними. Из них нижняя имеет 5 м высоты, вторая—около 70 и третья—200 м над уровнем моря.

Антиклиналь Анапа создает Новому Афону весьма высокую степень защищенности. В связи с этим микроклимат центральной части Ново-Афоня является одним из наиболее теплых по всей Абхазии.

По данным метеорологической станции «Санаторная» за 7 лет, среднегодовая температура в Новом Афоне на 0,2° выше чем в Сухуми. Там также выше средний минимум температуры (на 1,1°) и абсолютный минимум (на 1°). Здесь ниже только абсолютный максимум (почти на 3°) температуры, что указывает на более равномерный температурный режим Ново-Афоня.

На примере Ново-Афоня очень ярко можно проследить быструю смену микроклиматов и ландшафтных зон по вертикали.

Для иллюстрации этой закономерности воспользуемся данными одновременных наблюдений (проведенных П. П. Числовым—101) следующих метеорологических станций Ново-Афоня:

1. метеостанция «Приморская», около 3 м над у. м.;
2. метеостанция «Санаторная», 85 м над у. м.;
3. метеостанция «Орлиное гнездо», около 200 м над у. м.

С подъемом местности также возрастают атмосферные осадки. Так, годовая сумма осадков для «Приморской» равняется 1643 мм, а для «Санаторной» 1763 мм. Число дней с осадками для первой составляет 151, а для второй 162.

Последнее явление вполне закономерное и понятное. Удивление вызывает только первый случай. Как видно, здесь с повышением местности температура несколько повышается (около 100 м над у. м.), а потом (200 м над у. м.) опять понижается. Это вызвано, главным образом, зимними температурными инверсиями. Так, суммы средних температур зимних месяцев (декабрь, январь, февраль)

21 Данные очень кратковременные (за 2 года) и не могут претендовать на полное освещение вопроса.
"Приморской" равняется 22,6°, в "Санаторной" — 25,7°, "Орлином гнезде"—23,2°. Таким образом, самой теплой оказывается приморская полоса, расположенная приблизительно от 50 до 200 м над у. м., а прибрежье, ниже 50 м, находится под отрицательным влиянием температурной инверсии.

Что касается летней температуры, то она закономерно падает с повышением местности. Сумма средних температур трех летних месяцев (июнь, июль, август) в "Приморской" составляет 70,5°, в "Санаторной" 70,2°, а в "Орлином гнезде" падает до 65,4°.

По вертикали меняются также почвы и растительность. Узкая прибрежная зона покрыта подзолистыми почвами и максимально освоена под хозяйство. Здесь раскинулись цитрусовые плантации и оливковые рощи. Видное место имеют виноградники, плодовые сады, табачные плантации и др.

Значительную часть территории занимают приморский парк и кипарисовые аллеи. Почти вся равнинная часть Нового Афона занята прудами (около 10). Когда-то на месте прудов были болота, служившие рассадниками комаров, а через них и майяры. Болота превращены в большие бассейны с искусственными дном и берегами. Вода проточная, проведена из реки Мананикара.

Средние и верхние склоны Ново-Афонской горы покрыты густым лесом из граба, дуба и букка, с господством последнего. В ущельях рек встречается самшит.

Роскошная растительность, море, реки, горы, обычные солнечных дней, тёплые прохладные ущелья в соединении с хорошо организованным Курортным хозяйством делают Новый Афон одним из красивейших мест на всем Черноморском побережье Кавказа.

Прекрасные природные условия, особенно теплая зима и Сарапирские (Приморские) сероводородные источники дают большие возможности для роста Ново-Афонского курorta.

12. Гагрский район. От р. Хоунупе и до Старых Гагр Кавказские вплотную подходят к морю и образуется у него высокими и крутыми склонами. В связи с этим полоса холмистых предгорий и приморской низменности здесь вовсе отсутствует, и над узкой полоской плажа крутые, местами почти отвесно поднимаются известняковые стены Гагрского массива. Шоссе (Гагра—Сочи) проходит здесь на высоте около 70—100 м в зоне крутового склона, а железная дорога через тоннель. Этот участок побережья известен в литературе под названием "Гагрского карниза", "Гагрского дефиле", "Гагрского узкого коридора". Замкнутый с одной стороны неприступной крутизной гор и омываемый с другой морскими волнами, этот берег слуг жил раньше воротами, замкнувшими Абхазию с севера.

От Старых Гагр горы постепенно отступают от берега моря, прибрежная полоса расширяется и приобретает более равнинный характер, а от Новых Гагр появляется и пояск холмистых предгорий, имеющих весьма ценное хозяйственное значение.

Здесь террасы достигают замечательного развития и образуют целую сложную серию. Б. Ф. Добрынин (25) констатировал здесь следующие ступени: 5—6 м, 13—14 м, 37 м, около 130 м, 200 м, 290—300 м над уровнем моря, кроме того, промежуточные террасовые площадки на высотах 210—220 и 255—265 м. Они обра-
зуют выравненные площадки, имеющие большое значение для курортного и сельского хозяйства.
Установившая высоты и их морской генезис, Б. Ф. Добычин соодерженно справедливо высказывает мнение о крупных, происходя-
ших в целом ряде стадий, вертикальных поднятиях этой горной по-
лосы за четвертичное время.
В нижней части Гагрского массива, близ побережь, как и сле-
довало ожидать, приминая во внимание карстовый характер массива
и наклон слоев, появляются многочисленные карстовые источники—
«пещерные реки»: Репра, Бегереста, Анахомста и др.
Многие источники выходят из трещин известников и связаны с
интенсивными дислокациями. Было здесь зарегистрировано 42 кар-
стовых источника с общим дебитом свыше 3,4 тыс. литров в секунду.
Температура всех источников низкая (9—10°), вода прозрачная и
обладает хорошими питьевыми свойствами, но использование их
для целей водоснабжения (или энергетики) представляет большие
трудности, вследствие низких отметок выходов источников.
Вследствие легкой растворимости и размываемости горных по-
род Гагрского массива, образуется сеть узких и глубоких, с крутыми
клонами, ущелий, по которым пролагают свой путь реки. Во многи-
х участках бассейна р. Жохвара и в долинах рр. Гагрипш, Ци-
герва, Анахомста, Чигиринш и др. наблюдается пополнение воды
известняками через трещины и воронки. Поэтому режим рек резко
зависит от атмосферных осадков. Воды быстро, бурными потоками
скачиваются по крутым склонам ущелий и существование многих
речек прекращается с прекращением дождей. Лишь наиболее значи-
тельные реки Гагрского массива Жохвара и Гагрипш имеют воду
хотя бы в нижних частях долин, а большая часть их ущелий в сухой
период почти совсем лишена воды.
В окрестностях Гагр много и карстовых пещер: «Ольгинский
грот», «Вторая ольгинская пещера», «Амбра Хапе» и др.22
Карстовым процессам подвержен, по-видимому, весь известняко-
вый массив. мощность которого весьма значительна и оценивается в
2250 м. Н. А. Гвоздецкий (14) нижним пределом распространения в
глубину карста считает подстилающую известняками водоупорную
сланцево-порфироватую толщу средней купу.
Своеобразные геоморфологические особенности района обуслов-
ливают большую защищенность его нижней приморской части от
холодных воздушных течений.
Интересно отметить, что чем лучше отгорожен прибрежный
район горами, тем с большей силой сказывается влияние моря.
Этим и объясняется странное на первый взгляд явление, что
климат Гагрского побережья, лежащего в северо-западной части
Абхазии, гораздо мягче и температура росшей, чем в г. Очампире,
лежащем также на берегу моря и, при этом почти на 1° южнее от него.
То же самое можно сказать и в отношении Нового Афона.
В отношении температуры Гагра является центром тепла на
Черноморском побережье Кавказа. К северу и югу от Гагра как
зимняя, так и средняя годовая температура стоят на более низких

22 Участки с наибольшим развитием поверхностных форм карста нахо-
дятся за пределами нашего рассмотрения (выше границы леса).
уровнях; например, средняя годовая температура воздуха в Гаграх составляет +15,1°, в Сухуми 14,9°, в Гульрипши 14,7°, в Очамчире 13,6°, в Поти 14,1°, Батуми 14,4°, в Сочи 14,7°, в Туапсе 13,6°.

В Советском Союзе нигде нет более теплой зимы, чем в Гаграх. Средняя температура января в Гаграх равняется +6,8°, в Сухуми 6,2°, в Гульрипши 6,0°, в Очамчире 4,1°, в Поти 5,8°, в Батуми 6,4°, в Сочи 6,1°, в Туапсе 4,4°. Сумма средних температур зимних месяцев в Гаграх составляет 22,8°, в Сухуми 20,5°, в Очамчире 15,0°, Поти 20,1°, Батуми 22,2°, в Сочи 20,3°, в Туапсе 16,4°.

В распределении же осадков наблюдается обратное соотношение: к северу и к югу от Гагра сумма осадков постепенно возрастает. Так, в Гаграх среднегодовая сумма осадков равняется 1271 мм, в Сухуми 1460 мм, в Гали 1530 мм, Поти 1610, Батуми 2365 мм, в Сочи 1410 мм.

По-видимому, такой характер температурного режима и атмосферных осадков дает повод некоторым исследователям относить климат Гагрского побережья к средиземноморскому типу, что не совсем правильно. Несмотря на то, что здесь выше среднегодовая температура, а ниже (на 130—140 мм) количество атмосферных осадков, чем в других пунктах Черноморского побережья Кавказа, Гагра все же нельзя отнести к средиземноморскому типу климата. Правда, Гагра больше находит как то связь с средиземноморским типом климата, но здесь имеются лишь элементы такого климата ни больше ни меньше.

Часто климат Гагра сравнивают с климатом Французской Ривьеры вообще и с климатом Ниццы в частности, т. е. с той частью южно-французского побережья, которая характеризуется типичным средиземноморским климатом.

Во-первых, в Гаграх выпадает на 50% больше атмосферных осадков, чем в Ницце. Во-вторых, годовая испаряемость в Гаграх составляет 935 мм и соответственно средний годовой коэффициент ее увлажнения достигает значительной величины—(1,37), тогда как в Ницце среднегодовая испаряемость, при 828 мм осадков, достигает 1058 мм и годовой коэффициент увлажнения характеризуется большим дефицитом (0,78). Число месяцев в году с коэффициентом увлажнения ниже 0,60 (т. е. засушливых и сухих) в Гаграх нет, а в Ницце достигает 4 месяцев.

Правда, в Гаграх, а также и других пунктах Черноморского побережья Абхазии, бывает сухой период (это в основном июль и август), но такого катастрофического характера не приобретает как в Средиземноморье. Все это результат не только общего количества осадков, но и его распределения по сезонам. На Гагрском побережье атмосферные осадки распределены почти равномерно: лето—21%, осень—27%, зима—27% и весну 25%.

В районе же Французской Ривьеры режим атмосферных осадков имеет типично средиземноморский характер, с резко выраженным летним минимумом и зимним максимумом. Продолжительное, жаркое и бездождевое лето сильно отражается на природном и культурном ландшафте, и искусственное орошение там получает всё большее значение в сельском хозяйстве.

Продолжительное, жаркое и сухое лето Средиземноморья обусловливает выработку у растений приспособлений для уменьшения
испарения, а вместе с тем — общий ксерофитный тип растительности.

На Гагарском побережье, правда, имеются представители (элементы) когда-то существовавшей здесь (по-видимому, в постгляциане) средиземноморской растительности (главным образом, на дюнах, приморских обрывах и склонах), такие как лишайниковая сосна, небольшие насаждения лавра 23, травянистые многолетники и небольшие кустарники типа фриганы — Seseli rupestris, Satureja hzybiera, Rhuea cordata и некоторые другие 24, но здесь основным зональным типом растительности являются широколиственные леса колхидского типа.

Подобные леса в Средиземноморье занимают лишь «переходную» или «нижнегорную» зону от 500—600 до 1000—1200 м над уровнем моря, а в нижней полосе (соответствующей Гагарскому побережью) располагается «вечнозеленая зона», которая на Абхазском побережье в настоящее время отсутствует.

Данные метеорологической станции Гагарского хребта (1630 м) ярко показывают существование вертикальных климатических зон на его южном склоне. Так, здесь с повышением местности на каждые 180 м температура падает на 1° (средняя годовая температура в Гагарах составляет +15,1°, на Гагарском же хребте опускается до +5,8°), а сумма атмосферных осадков на каждые 100 м возрастает на 30 мм (в Гагарах равняется 1271 мм, на Гагарском хребте 1737 мм).

В прибрежной холмистой зоне в основном распространены подзолистые и желтоземные почвы, которые при благоприятных климатических условиях способствуют значительному развитию южных растений.

Самым привлекательным является здесь парк, посаженный вдоль моря и занимающий всю равнинную часть Старой Гагры. Он богат субтропическими насаждениями из фиников и кокосовых пальм, магнолий, лавров, агав, бананов, олеандров и др. Здесь насчитывается около 300 видов различных растений.

К юго-востоку от Новой Гагры, на предгорных холмах, раскинулись табачные плантации, виноградники, кукурузные поля, рощи пробкового дуба и эвкалпитов.

На крутых склонах, подступающих близко к самому морю, среди богатой лесной растительности, прячутся красивые здания санаториев и домов отдыха.

Продолжительный теплый период, малое колебание температуры в течение года, слабые ветры, значительное количество часов солнечного сияния, малое содержание пыли и бактерий в прирежском воздухе, большое постоянство температуры морской воды — всё это создает благоприятные условия для круглогодичного функционирования курорта, имеющего Всесоюзное значение.

Почва на склонах перегнойно-карбонатная, развитая на коре выветривания известняков. Совокупность почво-грунтовых ус-

23 По мнению некоторых исследователей, лавр, а также маслина являются на побережье Абхазии растениями древней интродукции.

24 Представители Средиземноморской флоры лучше сохранились в районе Пицунда—Мюссеры, где для этого имеются лучшие условия (соответствующие почво-грунты и высокая инсоляция).

46. Труды пединститута. 721
ловий при умеренно теплом и влажном климате обусловливает богатство лесной растительности.

Вертикальная зональность природной растительности выражена здесь отчетливо, но несколько смягчена влиянием моря, влажностью воздуха и литологическим составом района.

Обращенные к морю склоны, помимо культурных насаждений, покрыты лесом из дуба (*Quercus iberica*), кавказского граба, клена и др. Дуб идет вверх до 600—700 м над уровнем моря. Выше господствует бук и пихта. Этим лесам сопутствует характерная для известняка эндемичная растительность — *Penceedanum colcareum*, *Campanula mirabilis*, *Satureja bzybica* и др.). На затененных склонах и в ущельях рек (Жоэквара, Гагрипш и др.) до 300 м над уровнем моря растет смешанный лес (бук, граб, карагач, самшит, клен, липа, ясень, ива, ольха и др.).

Гагрский район можно подразделить на четыре высотные ландшафтные зоны:

1. Зона предгорий, с широким развитием террас, сравнительно теплым и влажным климатом, желтоземными и подзолистыми почвами, типичным колхидским лесом с элементами средиземноморской растительности, максимально освоенная под хозяйство. «Культурная» зона.

2. Зона среднегорно-карстового ландшафта, с горно-долинным рельефом, умеренно теплым и влажным климатом, с перегнойно-карбонатными почвами, с развитием мезофильных лесов (бук, граб, клён и т. д.) и известняковых эндемов.

3. Зона высоких известняковых хребтов, с умеренно-холодным и влажным климатом, с развитием высокостольных лесов из бук и темнохвойных пород (пихта).

4. Гребневая зона, с холодным климатом, с превосходным развитием поверхностных форм карста, с субальпийской и альпийской растительностью.

- Предлагаемая схема ландшафтного районирования Гагрского района приблизительно совпадает со схемой, разработанной недавно К. В. Кавришвили (40).
ЛИТЕРАТУРА

1. Авдеева А. — Почвы районов табаководства Пиленковского района Абхазской ССР. Сборник работ по обслед. почв. районов Абхазской ССР, Краснодар, 1934.

2. Алисов Б. П. — Климатические области зарубежных стран. М., 1950.

3. Алисов Б. П. — Климат СССР. Издательство МГУ, 1956.

4. Байбакова Е. М. — Динамика местной погоды при холодных вторжениях в долинах рек Риони и Курсы зимой и летом. Труды инст. геогр. АН СССР, в. 48, 1950.

5. Бережной И. М., Капцинель М. А. и Нестеренко Г. А. — Субтропические культуры. М., 1951.

9. Ваханина Е. К. — Геологические исследования в приморской зоне Абхазии. Труды ГГИ, Грузнефть, № 2, 1940.

12. Владимиров Л. — Режим стока рек Грузии (на грун. яз.). Там же.

14. Гвоздецкий Н. А. — Карстовые области Большого Кавказа и проблема морфологии карста на основе их изучения. Докторская диссертация. М., 1946—48 гг.

15. Гвоздецкий Н. А. — Физическая география Кавказа, ч. 1, издание МГУ, 1954.

16. Гедеванишвили Д. П. — Почвы Кольхской низменности. Труды совещания по организ. Кольхской опытн. станции, Тбилиси, 1929.

17. Гожев А. Д. — О физико-географическом районировании. Известия Всесоюз. геогр. о-ва, в 1, 1948.

18. Гожев А. Д. — О вариациях типов ландшафта. Учен. записки ЛГПИ, т. 73, Ленинград, 1948.

20. Гольцберж И. А. — Мировые агро-климатические аналогии субтропической зоны СССР. Там же.

22. Дараселия М. — Красноземные и подзолистые почвы Грузии ... Тбилиси, 1949.

23. Девдариани Г. — Геоморфологические наблюдения в окрестностях Сухуми (на грун. яз.). Труды Кутаисского пединститута им. Цулукидзе, т. 6, 1946.

25. Добрынин Б. Ф. — Террасы Абхазии. Учен. записки МГУ, в 5, М., 1936.

26. Добрынин Б. Ф. — Закавказье. Опыт физико-географической характеристики. Труды инст. геогр. АН СССР, т. 34, М., 1940.

27. Добрынин Б. Ф. — Физическая география СССР, Европейская часть и Кавказ. М.-Л., 1941.

29. Докуровский В. С.—Материалы по изучению фораминифер Закавказья. Почво-
веденее, № 2. 1936.
30. Живаго А. В.—Современные геоморфологические процессы и динамика нано-
sов в Сухумском бухте. Рукопись, 1948. Фонды инст. геогр. АН СССР.
31. Захаров С. А.—Почвенно-географический очерк Абхазии, Сухуми, 1930.
32. Званба С. Т.—Етнографические этюды Под редакцией и предисловием Г. А.
33. Иванов Н. И.—Ландшафтно-климатические зоны землестра шара. Записки Всесоюз.
геогр. о-ва, Новая серия, т. 1, М.-Л., 1948.
34. Ильин С. И. и Эберзин А. Г.—Очерк геологического строения полосы третич-
ных отложений Ю. Абхазии. Статья первая. Труды нефт. геоло-разведоч.
нест., серия Б, в. 38, М.-Л., 1933.
35. Ильин С. И. и Эберзин А. Г.—Очерк геологического строения полосы третич.
ных отложений Ю. Абхазии. Статья вторая. Труды нефт. геоло-разведоч. нест.,
серия Б, в. 54, М.-Л., 1935.
36. Исаченко А. Г.—Основные вопросы физической географии. Л., 1953.
37. Исаченко А. Г.—Задачи и методы ландшафтоведений. Известия Всесоюз. геогр.
о-ва, т. 87, в. 5, 1955.
38. Исаченко А. Г.—Некоторые итоги Второго Совещания по ландшафтоведению.
Известия Всесоюз. геогр. о-ва, т. 88, в. 5, 1956.
40. Кавришвили В. И.—К физико-географической характеристике Гагрского
района. Труды Тбилисск. Гос. ун-та, т. 58, 1956.
41. Картф физико-географических (ландшафтных) областей, районов и зон Грузинской
ССР с объяснительным текстом под общей редакцией Б. Ф. Добрыни.
Тбилиси, 1944.
42. Кецовели Н.—Растительность Колхиды (на груз. яз.). Труды Груз. геогр.
о-ва, т. 1, 1939.
43. Киккадишли В.—Гидрография рек Грузии (на груз. яз.). Труды инст. геогр.
им. Вахушти АН ГССР, т. 3, разд. 2, Тбилиси, 1948.
44. Климатологический справочник СССР, в. 14, Грузинская ССР, Тбилиси, 1949.
45. Ковда В. А.—Почвы табачных районов (б) Сухумского уезда Абхазской
АССР. Сборник работ по обслед. почв. районов Абхазской АССР. Красно-
дар, 1934.
46. Козлов А. Л.—Предварительный отчет о геологическом исследовании в бывшем
Сухумском уезде в 1929 г. Известия геоло-развед. объедин. в. 68, 1932.
47. Колаковский А. А.—Основные фитоландшафты Приморской низменности Юж-
ной Абхазии. Труды Тбилисск. ботанического инст., XII, 1948.
48. Колаковский А. А.—К вопросу о вымирании Пицундской сосной рощи. Ботанический
журнал, т. 35, № 3, 1950.
49. Колаковский А. А.—Плиоценовая флора Сухуми. Труды Сухумского ботанического
сада, в. 7, Сухуми, 1952.
50. Колаковский А. А.—Плиоценовая флора Меоре Атара. Труды Сухумского ботанического
сада, в. 8, Сухуми, 1955.
51. Колаковский А. А.—Плиоценовая флора Дуба. Труды Сухумского ботанического
сада, в. 9, Сухуми, 1956.
52. Кордазаха М.—Климатический режим главных метеорологических зон Абхазии (на груз. яз.).
Труды инст., географии им. Вахушти АН ГССР, т. 3, разд. 1, 1948.
53. Ламбеко Арханджело.—Описание Мергелии (на груз. яз.). Тбилиси, 1938.
54. Лашвали Ш. В.—О современных изменениях береговой линии Абхазии. Известия
АН СССР, серия геологическая, № 12, 1956.
55. Лашвали Ш. В.—О Винтсукской флоре. Доклады АН СССР, т. 112, № 6, 1957.
56. Малеев В. П.—Материалы по водно-болотной растительности Абхазии. Известия
Абхазского научного о-ва, в. 3, 1926.
57. Малеев В. П.—Пицундская сосная роща. Труды Абхазского научного о-ва, т. 1, в. 2, 1927.
58. Малеев В. П.—Очерк растительности озер Бебесыр. Вестник Гнфлисск. бота-
нического сада. Новая серия, в. 3—4, 1927.
59. Малеев В. П.—Флора и растительность Абхазии. Абхазия, геоботанический и
лесоводственный очерк. М.-Л., 1936.
60. Малеев В. П.—Третичные реликты во флоре Западного Кавказа и основные
этапы четвертичной истории его флоры и растительности. Материалы по ист.
тории флоры и растительности. СССР, т. 1, 1941.
61. Маруашвили Л. И.—Пещера Аблашкра—замечательное карстовое образова-
ние в Абхазии. Природа, № 10, 1938.
62. Маруашвили Л. И.—Целесообразность пересмотра существующих представле-
ний о палеогеографических условиях ледникового времени на Кавказе. Тбили-
сис, 1956.
63. Материалы по агро-климатическому районированию субтропиков СССР, Л.,
1936.
64. Материалы к фауне Абхазии. Тбилисис, 1939.
65. Матырули Н. И.—К физико-географической характеристике окрестностей Сух-
66. Менагаришвили А. Д.—Торфя Грузии и торфяные удобрения для чая, цит-
русовых и других субтропических культур. Докторская диссертация. Тбили-
сис, 1942.
67. Милюков Ф. Н.—О морфологических и генетических типах ландшафтов—ана-
логов. Труды Второго Всесоюз. геогр. съезда, т. 1, 1948.
68. Милюков Ф. Н.—О понятии физико-географического ландшафта и системе
ландшафтных единиц. Известия Чкаловского отд. Всесоюз. геогр. обл-ва,
в. 2, 1948.
69. Милюков Ф. Н.—Основные вопросы ландшафтного районирования Юга Рос-
70. Мильянковский Е. С.—Флора и фауна Пицундской реликтовой рощи. Природа,
№ 1, 1955.
71. Минюкий А. А.—Абхазия страна белого угля. Рукопись, 1937. Фонды АБНИИ
в Гос. Архиве Абхазской АССР.
72. Михайловская О. Н.—Четвертичные террасы Абхазии. Труды первого Всесоюз.
ного геогр. съезда, в. 3, 1934.
73. Народное хозяйство Абхазской АССР. Статистический справочник. Абхгосиз-
дат, 1957.
74. Нафцевардзе Е.—Циркуляционные процессы атмосферы на территории Грузии,
как ее климатический фактор (на груз. яз.). Труды инст. геогр. им. Ва-
хушки АН ГССР, т. 3, разд. 1, 1948.
75. Нущубадзе Т.—Озера Грузии (на груз. яз.). Труды инст. геогр. им. Вахушки
АН ГССР, т. 3, разд. 2, 1948.
76. Перельман А. И.—Очерки геохимии ландшафта. География, 1955.
77. Полинов Б. Б.—Географические работы. География, Л., 1952.
78. Происхождение человека и древнее расселение человечества. Сборник ста-
тей, М., 1951.
79. Прокаев В. И.—К вопросу о физико-географическом районировании террито-
рии. Известия АН СССР, серия географическая, № 5, 1954.
80. Региратен В. П.—Общий обзор тектоники Закавказья. Геология СССР, т. 10,
ч. 1, М.-Л., 1941.
81. Ростовцев Л. А.—Пицундская сосновая роща. Записки Кавказского отд. Рус-
ского геогр. о-ва, вып. 29, в. 4, Тбилисис, 1916.
82. Рубинштейн М.—К проблеме геотектонического расчленения Грузии (на
груз. яз.). Труды инст. геол. и минер. АН СССР, Тбилисис, 1951.
83. Рукаадзе П. Е.—Динокарстовые эфиромасличные растения Абхазии и Сванетии.
Труды Сухумского ботанического сада, в. 7, 1952.
84. Сабашвили М. Н.—Почвы влажной субтропической зоны ССР Грузии. Тбили-
сис, 1936.
85. Сабашвили М. Н.—Почвы Грузии. Тбилисис, 1948.
86. Сафарсаш Л. Г.—Работа оползневой группы Закавказского института сооруже-
ний по изучению и борьбе с оползнями Закавказья. Труды первого Всесоо-
зен. оползневого совещания. М.-Л., 1935.
87. Селининов Г. Т.—Методика сельскохозяйственной оценки климата в суб-
тропиках. Материалы по агро-климат. районир. субтропиков СССР, Л., 1936.
88. Селининов Г. Т.—Границы субтропиков. Там же.
89. Селининов Г. Т.—Агро-климатические зоны и районы субтропиков. Там же.
90. Селининов Г. Т.—Принципы агро-климатического районирования СССР. Изве-
стия АН СССР, серия географическая, № 4, 1957.
91. Сичарулядзе Т. А.—Физико-географическая характеристика (общая и лан-
дшафтная) Абхазской АССР. Автореферат кандидатской диссертации. Гори,
1948.
93. Соловьев Н. А.— Природный географический ландшафт и некоторые общие его закономерности. Труды Второго Всесоюз. геогр. съезда, т. 1, 1948.
95. Справочник по водным ресурсам СССР, т. XI, Закавказье, Л., 1935.
96. Танфильев Г. И.— Очерк главнейших районов Черноморского побережья Кавказа. 1904.
97. Федина А. Е.— Опыт физико-географического районирования Кавказа. Автореферат кандидатской диссертации. Изд. МГУ, 1953.
98. Флеров А. Ф.— Растительность Колхидской низменности. Бюллетень БГИЧисКа № 1. Махарадзе—Анасупа, 1951.
100. Черченков А.— Почвы районов табаководства Абхазской АССР от сел. Холдая речка до Н. Афона включительно. Сборник работ по обслед. почв. районов Абхазской АССР, Краснодар, 1934.
103. Эберзини А. Г.— О неогеновых конгломератах правобережья р. Бзыбь (Абхазия) и их фауна. Доклады АН СССР, т. 56, 1947.
104. Ябрева В. С.— Дикорастущие лекарственные растения Абхазии. Сухуми, 1940.